BAYESIAN SELF-ORGANIZING MAP FOR DATA CLASSIFICATION AND CLUSTERING

被引:2
|
作者
Guo, Xiaolian [1 ]
Wang, Haiying [1 ]
Glass, David H. [1 ]
机构
[1] Univ Ulster, Sch Comp & Math, Newtownabbey BT37 0QB, Antrim, North Ireland
关键词
Pattern recognition; classification; clustering; Bayesian self-organizing map; RECOGNITION; TUTORIAL;
D O I
10.1142/S0219691313500379
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
The Bayesian self-organizing map (BSOM) has typically been used for density estimation. In this study, we implemented an adaptation of the model for performing unsupervized and supervised classification. In order to determine the optimal number of neurons to represent the given dataset during the learning process, an extended Bayesian learning process is proposed called the growing BSOM. It starts with two neurons and adds new neurons to the network via a process in which the neuron with the lowest individual log-likelihood is identified. The system has been tested using three synthetic datasets and one real dataset. The experimental results suggest that the BSOM-based approach can achieve better classification performance in comparisons to several widely-used models such as k-nearest neighbor (KNN), support vector machine (SVM) and Gaussian mixture model (GMM). By using the Bayesian information criterion (BIC) as a stopping criterion, the growing BSOM can model the data under study and estimate the number of clusters.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Clustering of the self-organizing map
    Vesanto, J
    Alhoniemi, E
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2000, 11 (03): : 586 - 600
  • [2] Self-organizing map clustering analysis for molecular data
    Wang, Lin
    Jiang, Minghu
    Lu, Yinghua
    Noe, Frank
    Smith, Jeremy C.
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 1, 2006, 3971 : 1250 - 1255
  • [3] An Enhancing Dynamic Self-Organizing Map for Data Clustering
    Wang, Ting
    Yu, Xinghuo
    Alahakoon, Damminda
    Fei, Shumin
    2013 10TH IEEE INTERNATIONAL CONFERENCE ON CONTROL AND AUTOMATION (ICCA), 2013, : 1324 - 1329
  • [4] An Improved Self-Organizing Map for Bugs Data Clustering
    Ahmed, Attika
    Ghazali, Rozaida
    2016 IEEE INTERNATIONAL CONFERENCE ON AUTOMATIC CONTROL AND INTELLIGENT SYSTEMS (I2CACIS), 2016, : 135 - 140
  • [5] A Semi-Supervised Self-Organizing Map for Clustering and Classification
    Braga, Pedro H. M.
    Bassani, Hansenclever E.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [6] Clustering of the Self-Organizing Time Map
    Sarlin, Peter
    Yao, Zhiyuan
    NEUROCOMPUTING, 2013, 121 : 317 - 327
  • [7] Gravitational Clustering of the Self-Organizing Map
    Ilc, Nejc
    Dobnikar, Andrej
    ADAPTIVE AND NATURAL COMPUTING ALGORITHMS, PT II, 2011, 6594 : 11 - 20
  • [8] Bi-clustering continuous data with self-organizing map
    Benabdeslem, Khalid
    Allab, Kais
    NEURAL COMPUTING & APPLICATIONS, 2013, 22 (7-8): : 1551 - 1562
  • [9] Clustering of Pressure Fluctuation Data Using Self-Organizing Map
    Ogihara, Masaaki
    Matsumoto, Hideyuki
    Marumo, Tamaki
    Kuroda, Chiaki
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS, PROCEEDINGS, 2009, 43 : 45 - 54
  • [10] Bi-clustering continuous data with self-organizing map
    Khalid Benabdeslem
    Kais Allab
    Neural Computing and Applications, 2013, 22 : 1551 - 1562