Efficient Online Subspace Learning With an Indefinite Kernel for Visual Tracking and Recognition

被引:43
|
作者
Liwicki, Stephan [1 ]
Zafeiriou, Stefanos [1 ]
Tzimiropoulos, Georgios [1 ,2 ]
Pantic, Maja [1 ,3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2AZ, England
[2] Lincoln Univ, Sch Comp Sci, Lincoln LN6 7TS, England
[3] Univ Twente, Fac Elect Engn Math & Comp Sci, NL-7522 NB Enschede, Netherlands
基金
欧洲研究理事会;
关键词
Gradient-based kernel; online kernel learning; principal component analysis with indefinite kernels; recognition; robust tracking; CLASSIFICATION; ROBUST; MODELS; SCALE;
D O I
10.1109/TNNLS.2012.2208654
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an exact framework for online learning with a family of indefinite (not positive) kernels. As we study the case of nonpositive kernels, we first show how to extend kernel principal component analysis (KPCA) from a reproducing kernel Hilbert space to Krein space. We then formulate an incremental KPCA in Krein space that does not require the calculation of preimages and therefore is both efficient and exact. Our approach has been motivated by the application of visual tracking for which we wish to employ a robust gradient-based kernel. We use the proposed nonlinear appearance model learned online via KPCA in Krein space for visual tracking in many popular and difficult tracking scenarios. We also show applications of our kernel framework for the problem of face recognition.
引用
收藏
页码:1624 / 1636
页数:13
相关论文
共 50 条
  • [1] Visual tracking via efficient kernel discriminant subspace learning
    Shen, CH
    van den Hengel, A
    Brooks, MJ
    2005 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), VOLS 1-5, 2005, : 1605 - 1608
  • [2] Kernel-Based Subspace Learning on Riemannian Manifolds for Visual Recognition
    Liu, Xi
    Ma, Zhengming
    NEURAL PROCESSING LETTERS, 2020, 51 (01) : 147 - 165
  • [3] Kernel-Based Subspace Learning on Riemannian Manifolds for Visual Recognition
    Xi Liu
    Zhengming Ma
    Neural Processing Letters, 2020, 51 : 147 - 165
  • [4] Learning kernel subspace for face recognition
    Li, Jianwu
    Hao, Wangli
    Zhang, Xiao
    NEUROCOMPUTING, 2015, 151 : 1187 - 1197
  • [5] Adaptive low-rank subspace learning with online optimization for robust visual tracking
    Liu, Risheng
    Wang, Di
    Han, Yuzhuo
    Fan, Xin
    Luo, Zhongxuan
    NEURAL NETWORKS, 2017, 88 : 90 - 104
  • [6] Visual object recognition using probabilistic kernel subspace similarity
    Lee, JG
    Wang, JD
    Zhang, CS
    Bian, ZQ
    PATTERN RECOGNITION, 2005, 38 (07) : 997 - 1008
  • [7] Learning a locality preserving subspace for visual recognition
    He, XF
    Yan, SC
    Hu, YX
    Zhang, HJ
    NINTH IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS I AND II, PROCEEDINGS, 2003, : 385 - 392
  • [8] Kernel Subspace Integral Image Based Probabilistic Visual Object Tracking
    Majeed, Iftikhar
    Arif, Omar
    2015 INTERNATIONAL CONFERENCE ON DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2015, : 449 - 455
  • [9] Online Mean Kernel learning for object tracking
    School of Technology, Beijing Forestry University, Beijing, China
    不详
    不详
    Int. J. Signal Process. Image Process. Pattern Recogn., 11 (273-282):
  • [10] Subspace Learning in Krein Spaces: Complete Kernel Fisher Discriminant Analysis with Indefinite Kernels
    Zafeiriou, Stefanos
    COMPUTER VISION - ECCV 2012, PT IV, 2012, 7575 : 488 - 501