Efficient Online Subspace Learning With an Indefinite Kernel for Visual Tracking and Recognition

被引:43
|
作者
Liwicki, Stephan [1 ]
Zafeiriou, Stefanos [1 ]
Tzimiropoulos, Georgios [1 ,2 ]
Pantic, Maja [1 ,3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2AZ, England
[2] Lincoln Univ, Sch Comp Sci, Lincoln LN6 7TS, England
[3] Univ Twente, Fac Elect Engn Math & Comp Sci, NL-7522 NB Enschede, Netherlands
基金
欧洲研究理事会;
关键词
Gradient-based kernel; online kernel learning; principal component analysis with indefinite kernels; recognition; robust tracking; CLASSIFICATION; ROBUST; MODELS; SCALE;
D O I
10.1109/TNNLS.2012.2208654
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an exact framework for online learning with a family of indefinite (not positive) kernels. As we study the case of nonpositive kernels, we first show how to extend kernel principal component analysis (KPCA) from a reproducing kernel Hilbert space to Krein space. We then formulate an incremental KPCA in Krein space that does not require the calculation of preimages and therefore is both efficient and exact. Our approach has been motivated by the application of visual tracking for which we wish to employ a robust gradient-based kernel. We use the proposed nonlinear appearance model learned online via KPCA in Krein space for visual tracking in many popular and difficult tracking scenarios. We also show applications of our kernel framework for the problem of face recognition.
引用
收藏
页码:1624 / 1636
页数:13
相关论文
共 50 条
  • [31] Online unsupervised feature learning for visual tracking
    Liu, Fayao
    Shen, Chunhua
    Reid, Ian
    van den Hengel, Anton
    IMAGE AND VISION COMPUTING, 2016, 51 : 84 - 94
  • [32] Visual Tracking with Online Multiple Instance Learning
    Babenko, Boris
    Yang, Ming-Hsuan
    Belongie, Serge
    CVPR: 2009 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-4, 2009, : 983 - +
  • [33] Visual Tracking Jointly With Online and Offline Learning
    Shen, Aihong
    Tian, Shengjing
    Tian, Guoqiang
    Zhang, Jie
    Liu, Xiuping
    IEEE ACCESS, 2020, 8 : 181091 - 181101
  • [34] Multiple Kernel Learning for Visual Object Recognition: A Review
    Bucak, Serhat S.
    Jin, Rong
    Jain, Anil K.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (07) : 1354 - 1369
  • [35] Kernel particle filter: Iterative sampling for efficient visual tracking
    Chang, C
    Ansari, R
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, 2003, : 977 - 980
  • [36] Learning kernel subspace classifier
    Zhang, Bailing
    Ko, Hanseok
    Gao, Yongsheng
    ADVANCES IN BIOMETRICS, PROCEEDINGS, 2007, 4642 : 299 - +
  • [37] A Primal Framework for Indefinite Kernel Learning
    Xue, Hui
    Wang, Lin
    Chen, Songcan
    Wang, Yunyun
    NEURAL PROCESSING LETTERS, 2019, 50 (01) : 165 - 188
  • [38] A Primal Framework for Indefinite Kernel Learning
    Hui Xue
    Lin Wang
    Songcan Chen
    Yunyun Wang
    Neural Processing Letters, 2019, 50 : 165 - 188
  • [39] Online subspace learning on Grassmann manifold for moving object tracking in video
    Wang, Tiesheng
    Backhouse, Andrew G.
    Gu, Irene Y. H.
    2008 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-12, 2008, : 969 - +
  • [40] Robust face recognition based on a new supervised kernel subspace learning method
    Mobarakeh, Ali Khalili
    Carrillo, Juan Antonio Cabrera
    Aguilar, Juan Jesús Castillo
    Sensors (Switzerland), 2019, 19 (07):