Efficient Online Subspace Learning With an Indefinite Kernel for Visual Tracking and Recognition

被引:43
|
作者
Liwicki, Stephan [1 ]
Zafeiriou, Stefanos [1 ]
Tzimiropoulos, Georgios [1 ,2 ]
Pantic, Maja [1 ,3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Comp, London SW7 2AZ, England
[2] Lincoln Univ, Sch Comp Sci, Lincoln LN6 7TS, England
[3] Univ Twente, Fac Elect Engn Math & Comp Sci, NL-7522 NB Enschede, Netherlands
基金
欧洲研究理事会;
关键词
Gradient-based kernel; online kernel learning; principal component analysis with indefinite kernels; recognition; robust tracking; CLASSIFICATION; ROBUST; MODELS; SCALE;
D O I
10.1109/TNNLS.2012.2208654
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose an exact framework for online learning with a family of indefinite (not positive) kernels. As we study the case of nonpositive kernels, we first show how to extend kernel principal component analysis (KPCA) from a reproducing kernel Hilbert space to Krein space. We then formulate an incremental KPCA in Krein space that does not require the calculation of preimages and therefore is both efficient and exact. Our approach has been motivated by the application of visual tracking for which we wish to employ a robust gradient-based kernel. We use the proposed nonlinear appearance model learned online via KPCA in Krein space for visual tracking in many popular and difficult tracking scenarios. We also show applications of our kernel framework for the problem of face recognition.
引用
收藏
页码:1624 / 1636
页数:13
相关论文
共 50 条
  • [21] Online visual tracking based on subspace representation with continuous occlusion modeling
    Chunjuan Bo
    Junxing Zhang
    Changhong Liu
    Qiang Yao
    Multimedia Systems, 2017, 23 : 357 - 368
  • [22] Latent Subspace Projection Pursuit with Online Optimization for Robust Visual Tracking
    Liu, Risheng
    Jin, Wei
    Su, Zhixun
    Zhang, Changcheng
    IEEE MULTIMEDIA, 2014, 21 (04) : 47 - 55
  • [23] Online visual tracking based on subspace representation with continuous occlusion modeling
    Bo, Chunjuan
    Zhang, Junxing
    Liu, Changhong
    Yao, Qiang
    MULTIMEDIA SYSTEMS, 2017, 23 (03) : 357 - 368
  • [24] Online Semantic Subspace Learning with Siamese Network for UAV Tracking
    Zha, Yufei
    Wu, Min
    Qiu, Zhuling
    Sun, Jingxian
    Zhang, Peng
    Huang, Wei
    REMOTE SENSING, 2020, 12 (02)
  • [25] Robust Visual Tracking with Incremental Subspace Learning Sparse Model
    Wang, Hongqing
    Xu, Tingfa
    COMMUNICATIONS, SIGNAL PROCESSING, AND SYSTEMS, 2019, 463 : 2721 - 2728
  • [26] Robust visual tracking based on incremental tensor subspace learning
    Li, Xi
    Hu, Weiming
    Zhang, Zhongfei
    Zhang, Xiaoqin
    Luo, Guan
    2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, : 960 - +
  • [27] Online Multiple Kernel Similarity Learning for Visual Search
    Xia, Hao
    Hoi, Steven C. H.
    Jin, Rong
    Zhao, Peilin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2014, 36 (03) : 536 - 549
  • [28] Online nonparametric discriminant analysis for incremental subspace learning and recognition
    Raducanu, B.
    Vitria, J.
    PATTERN ANALYSIS AND APPLICATIONS, 2008, 11 (3-4) : 259 - 268
  • [29] Online nonparametric discriminant analysis for incremental subspace learning and recognition
    B. Raducanu
    J. Vitrià
    Pattern Analysis and Applications, 2008, 11 : 259 - 268
  • [30] Online Discriminative Dictionary Learning for Visual Tracking
    Yang, Fan
    Jiang, Zhuolin
    Davis, Larry S.
    2014 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2014, : 854 - 861