Fourier spectral method for the modified Swift-Hohenberg equation

被引:4
|
作者
Zhao, Xiaopeng [1 ]
Liu, Bo [1 ]
Zhang, Peng [2 ]
Zhang, Wenyu [1 ]
Liu, Fengnan [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
[2] Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
关键词
CAHN-HILLIARD EQUATION; INSTABILITY;
D O I
10.1186/1687-1847-2013-156
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Fourier spectral method for numerically solving the modified Swift-Hohenberg equation. The semi-discrete and fully discrete schemes are established. Moreover, the existence, uniqueness and the optimal error bound are also considered.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Proof of Quasipatterns for the Swift-Hohenberg Equation
    Braaksma, Boele
    Iooss, Gerard
    Stolovitch, Laurent
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (01) : 37 - 67
  • [22] Defect formation in the Swift-Hohenberg equation
    Galla, T
    Moro, E
    PHYSICAL REVIEW E, 2003, 67 (03):
  • [23] EXISTENCE OF GENERALIZED HOMOCLINIC SOLUTIONS FOR A MODIFIED SWIFT-HOHENBERG EQUATION
    Shi, Yixia
    Han, Maoan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2020, 13 (11): : 3189 - 3204
  • [24] On radial solutions of the Swift-Hohenberg equation
    N. E. Kulagin
    L. M. Lerman
    T. G. Shmakova
    Proceedings of the Steklov Institute of Mathematics, 2008, 261 : 183 - 203
  • [25] Grain boundaries in the Swift-Hohenberg equation
    Haragus, Mariana
    Scheel, Arnd
    EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2012, 23 : 737 - 759
  • [26] The Swift-Hohenberg equation with a nonlocal nonlinearity
    Morgan, David
    Dawes, Jonathan H. P.
    PHYSICA D-NONLINEAR PHENOMENA, 2014, 270 : 60 - 80
  • [27] Some examples of Swift-Hohenberg equation
    Jani, Haresh P.
    Singh, Twinkle R.
    EXAMPLES AND COUNTEREXAMPLES, 2022, 2
  • [28] DYNAMICAL BIFURCATION OF THE ONE DIMENSIONAL MODIFIED SWIFT-HOHENBERG EQUATION
    Choi, Yuncherl
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 52 (04) : 1241 - 1252
  • [29] The Swift-Hohenberg equation on conic manifolds
    Roidos, Nikolaos
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 481 (02)
  • [30] MODULATION EQUATION FOR STOCHASTIC SWIFT-HOHENBERG EQUATION
    Mohammed, Wael W.
    Bloemker, Dirk
    Klepel, Konrad
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (01) : 14 - 30