Some examples of Swift-Hohenberg equation

被引:0
|
作者
Jani, Haresh P. [1 ]
Singh, Twinkle R. [1 ]
机构
[1] Sardar Vallabhbhai Natl Inst Technol, Dept Math & Humanities, Surat 395007, Gujarat, India
来源
关键词
Swift-Hohenberg (S-H) equation; Partial differential equation; Homotopy perturbation method; Aboodh transform;
D O I
10.1016/j.exco.2022.100090
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we solve partial differential equations using the Aboodh transform and the homotopy perturbation method (HPM). The Swift-Hohenberg equation accurately describes pattern development and evolution. The Swift-Hohenberg (S-H) model is linked to fluid dynamics, temperature, and thermal convection, and it can be used to describe how liquid surfaces with a horizontally well-conducting boundary form.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Some canonical bifurcations in the Swift-Hohenberg equation
    Peletier, L. A.
    Williams, J. F.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2007, 6 (01): : 208 - 235
  • [2] Spots in the Swift-Hohenberg Equation
    McCalla, S. G.
    Sandstede, B.
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2013, 12 (02): : 831 - 877
  • [3] The stochastic Swift-Hohenberg equation
    Gao, Peng
    NONLINEARITY, 2017, 30 (09) : 3516 - 3559
  • [4] A MODIFIED SWIFT-HOHENBERG EQUATION
    Kania, Maria B.
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2011, 37 (01) : 165 - 176
  • [5] Bifurcation in the Swift-Hohenberg Equation
    Xiao, Qingkun
    Gao, Hongjun
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (03):
  • [6] SWIFT-HOHENBERG EQUATION FOR LASERS
    LEGA, J
    MOLONEY, JV
    NEWELL, AC
    PHYSICAL REVIEW LETTERS, 1994, 73 (22) : 2978 - 2981
  • [7] On Radial Solutions of the Swift-Hohenberg Equation
    Kulagin, N. E.
    Lerman, L. M.
    Shmakova, T. G.
    PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2008, 261 (01) : 183 - 203
  • [8] A SHOOTING METHOD FOR THE SWIFT-HOHENBERG EQUATION
    Tao Youshan  Zhang JizhouDept.of Appl.Math.
    Applied Mathematics:A Journal of Chinese Universities, 2002, (04) : 391 - 403
  • [9] Proof of Quasipatterns for the Swift-Hohenberg Equation
    Braaksma, Boele
    Iooss, Gerard
    Stolovitch, Laurent
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (01) : 37 - 67
  • [10] Defect formation in the Swift-Hohenberg equation
    Galla, T
    Moro, E
    PHYSICAL REVIEW E, 2003, 67 (03):