Fourier spectral method for the modified Swift-Hohenberg equation

被引:4
|
作者
Zhao, Xiaopeng [1 ]
Liu, Bo [1 ]
Zhang, Peng [2 ]
Zhang, Wenyu [1 ]
Liu, Fengnan [1 ]
机构
[1] Jilin Univ, Coll Math, Changchun 130012, Peoples R China
[2] Chinese Acad Sci, Inst Software, Beijing 100190, Peoples R China
关键词
CAHN-HILLIARD EQUATION; INSTABILITY;
D O I
10.1186/1687-1847-2013-156
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Fourier spectral method for numerically solving the modified Swift-Hohenberg equation. The semi-discrete and fully discrete schemes are established. Moreover, the existence, uniqueness and the optimal error bound are also considered.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Dynamics of phase domains in the Swift-Hohenberg equation
    Staliunas, K
    Sanchez-Morcillo, VJ
    PHYSICS LETTERS A, 1998, 241 (1-2) : 28 - 34
  • [42] DYNAMIC BIFURCATION OF THE COMPLEX SWIFT-HOHENBERG EQUATION
    Han, Jongmin
    Yari, Masoud
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2009, 11 (04): : 875 - 891
  • [43] Bifurcation Analysis and Pattern Selection of Solutions for the Modified Swift-Hohenberg Equation
    Choi, Yuncherl
    Ha, Taeyoung
    Han, Jongmin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (11):
  • [44] Dissipative mechanism and global attractor for modified Swift-Hohenberg equation in RN
    Czaja, Radoslaw
    Kania, Maria
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (07) : 2728 - 2750
  • [45] Interfaces between rolls in the Swift-Hohenberg equation
    Haragus, Mariana
    Scheel, Arnd
    INTERNATIONAL JOURNAL OF DYNAMICAL SYSTEMS AND DIFFERENTIAL EQUATIONS, 2007, 1 (02) : 89 - 97
  • [46] Swift-Hohenberg equation with broken reflection symmetry
    Burke, J.
    Houghton, S. M.
    Knobloch, E.
    PHYSICAL REVIEW E, 2009, 80 (03):
  • [47] Domain dynamics in the anisotropic Swift-Hohenberg equation
    Ouchi, K
    Fujisaka, H
    PHYSICAL REVIEW E, 2004, 70 (03):
  • [48] To Snake or Not to Snake in the Planar Swift-Hohenberg Equation
    Avitabile, Daniele
    Lloyd, David J. B.
    Burke, John
    Knobloch, Edgar
    Sandstede, Bjoern
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2010, 9 (03): : 704 - 733
  • [49] Instability and stability of rolls in the Swift-Hohenberg equation
    Mielke, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 189 (03) : 829 - 853
  • [50] Generalized homoclinic solutions for the Swift-Hohenberg equation
    Deng, Shengfu
    Li, Xiaopei
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 390 (01) : 15 - 26