ZnO plasmonics for telecommunications

被引:40
|
作者
Look, D. C. [1 ,2 ,3 ]
Leedy, K. D. [3 ]
机构
[1] Wright State Univ, Semicond Res Ctr, Dayton, OH 45435 USA
[2] Wyle Labs Inc, Dayton, OH 45431 USA
[3] USAF, Res Lab, Sensors Directorate, Wright Patterson AFB, OH 45433 USA
基金
美国国家科学基金会;
关键词
D O I
10.1063/1.4804984
中图分类号
O59 [应用物理学];
学科分类号
摘要
Plasmonic resonances (kres's) at the telecommunication wavelengths of 1.3 and 1.55 mu m can be accurately produced in ZnO layers grown at 200 degrees C by pulsed laser deposition in pure Ar ambient using a ZnO target with 3 wt. % Ga2O3, and then annealed in air to produce Hall-effect-determined carrier concentrations 8.8 and 6.0 x 10(20) cm(-3), respectively. Appropriate values of concentration and Hall mobility for a desired lambda(res) can be conveniently determined from a "plasmonic resonance phase diagram," generated from the Drude equation and mobility theory. Values of lambda(res) as low as 1 mu m can be attained in ZnO. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Plasmonics effect of Ag nanoislands covered n-Al:ZnO/p-Si heterostructure
    Venugopal, N.
    Kaur, Gurpreet
    Mitra, Anirban
    APPLIED SURFACE SCIENCE, 2014, 320 : 30 - 42
  • [22] Commercializing plasmonics
    不详
    NATURE PHOTONICS, 2015, 9 (08) : 477 - 477
  • [23] Roadmap on plasmonics
    Stockman, Mark I.
    Kneipp, Katrin
    Bozhevolnyi, Sergey I.
    Saha, Soham
    Dutta, Aveek
    Ndukaife, Justus
    Kinsey, Nathaniel
    Reddy, Harsha
    Guler, Urcan
    Shalaev, Vladimir M.
    Boltasseva, Alexandra
    Gholipour, Behrad
    Krishnamoorthy, Harish N. S.
    MacDonald, Kevin F.
    Soci, Cesare
    Zheludev, Nikolay I.
    Savinov, Vassili
    Singh, Ranjan
    Gross, Petra
    Lienau, Christoph
    Vadai, Michal
    Solomon, Michelle L.
    Barton, David R., III
    Lawrence, Mark
    Dionne, Jennifer A.
    Boriskina, Svetlana V.
    Esteban, Ruben
    Aizpurua, Javier
    Zhang, Xiang
    Yang, Sui
    Wang, Danqing
    Wang, Weijia
    Odom, Teri W.
    Accanto, Nicolo
    de Roque, Pablo M.
    Hancu, Ion M.
    Piatkowski, Lukasz
    van Hulst, Niek F.
    Kling, Matthias F.
    JOURNAL OF OPTICS, 2018, 20 (04)
  • [24] The promise of plasmonics
    Atwater, Harry A.
    SCIENTIFIC AMERICAN, 2007, 296 (04) : 56 - 63
  • [25] Plasmonics for the industry
    Luetolf, Fabian
    Basset, Guillaume
    Casari, Daniele
    Luu-Dinh, Angelique
    Gallinet, Benjamin
    PLASMONICS: METALLIC NANOSTRUCTURES AND THEIR OPTICAL PROPERTIES XIII, 2015, 9547
  • [26] Reconfigurable plasmonics
    Odom, Teri
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [27] Quantum plasmonics
    Fyodorov, Ilya
    Sarychev, Andrey K.
    Tartakovsky, Gennady
    METAMATERIALS: FUNDAMENTALS AND APPLICATIONS VI, 2013, 8806
  • [28] Hyperspectral Plasmonics
    Lepage, Dominic
    Jimenez, Alvaro
    Dubowski, Jan J.
    SYNTHESIS AND PHOTONICS OF NANOSCALE MATERIALS VIII, 2011, 7922
  • [29] Molecular plasmonics
    Nordlander, Peter
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 242
  • [30] Quantum plasmonics
    Tame M.S.
    McEnery K.R.
    Özdemir Ş.K.
    Lee J.
    Maier S.A.
    Kim M.S.
    Nature Physics, 1600, Nature Publishing Group (09): : 329 - 340