Quasi-interpolation for analysis-suitable T-splines

被引:4
|
作者
Kang, Hongmei [1 ]
Yong, Zhiguo [1 ]
Li, Xin [2 ]
机构
[1] Soochow Univ, Sch Math Sci, 1 Shizi Rd, Suzhou 215006, Jiangsu, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasi-interpolation; Quasi-interpolants; Marsden?s identity; Analysis-suitable T-splines; SURFACE RECONSTRUCTION; ISOGEOMETRIC ANALYSIS; LINEAR INDEPENDENCE; POLYNOMIAL SPLINES; LOCAL REFINEMENT; NURBS;
D O I
10.1016/j.cagd.2022.102147
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a novel local approximation method for analysis-suitable T-spline (AS T-spline) spaces via quasi-interpolation. The quasi-interpolants are defined as linear combination of the approximated function's values at appropriately chosen points. Benefited from the inherent nice properties of AS T-splines, the proposed quasi-interpolants can reproduce polynomials up to the same degree of AS T-spline spaces and can provide optimal approximation order. Some numerical examples of specific quasi-interpolants for bi-cubic AS T-splines are investigated to show the stability and efficiency. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Characterization of analysis-suitable T-splines
    Bressan, Andrea
    Buffa, Annalisa
    Sangalli, Giancarlo
    COMPUTER AIDED GEOMETRIC DESIGN, 2015, 39 : 17 - 49
  • [2] Local refinement of analysis-suitable T-splines
    Scott, M. A.
    Li, X.
    Sederberg, T. W.
    Hughes, T. J. R.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 213 : 206 - 222
  • [3] SOME PROPERTIES FOR ANALYSIS-SUITABLE T-SPLINES
    Li, Xin
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2015, 33 (04) : 428 - 442
  • [4] Local spline projectors of analysis-suitable T-splines
    Xu, Hailun
    Kang, Hongmei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 462
  • [5] Analysis-Suitable T-splines are Dual-Compatible
    da Veiga, L. Beirao
    Buffa, A.
    Cho, D.
    Sangalli, G.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 249 : 42 - 51
  • [6] Multivariate Analysis-Suitable T-Splines of Arbitrary Degree
    Hiniborch, Robin
    Morgenstern, Philipp
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024, 24 (04) : 859 - 885
  • [7] Analysis-suitable T-splines: Characterization, refineability, and approximation
    Li, Xin
    Scott, M. A.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (06): : 1141 - 1164
  • [8] Local refinement for analysis-suitable plus plus T-splines
    Zhang, Jingjing
    Li, Xin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 342 : 32 - 45
  • [9] BPX preconditioners for isogeometric analysis using analysis-suitable T-splines
    Cho, Durkbin
    Vazquez, Rafael
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (01) : 764 - 799
  • [10] Isogeometric collocation using analysis-suitable T-splines of arbitrary degree
    Casquero, Hugo
    Liu, Lei
    Zhang, Yongjie
    Reali, Alessandro
    Gomez, Hector
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 301 : 164 - 186