Local refinement of analysis-suitable T-splines

被引:292
|
作者
Scott, M. A. [1 ]
Li, X. [2 ]
Sederberg, T. W. [3 ]
Hughes, T. J. R. [1 ]
机构
[1] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
[2] Univ Sci & Technol China, Hefei 230026, Anhui, Peoples R China
[3] Brigham Young Univ, Dept Comp Sci, Provo, UT 84602 USA
基金
美国国家科学基金会;
关键词
Isogeometric analysis; T-splines; Local refinement; Bezier extraction; FLUID-STRUCTURE INTERACTION; ISOGEOMETRIC ANALYSIS; NONLINEAR ELASTICITY; NURBS; CONTINUITY; MESH; CAD;
D O I
10.1016/j.cma.2011.11.022
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We develop a local refinement algorithm for analysis-suitable T-splines which does not produce excessive propagation of control points. We then demonstrate its use as an adaptive framework for isogeometric analysis. Analysis-suitable T-splines are a class of T-splines which are linearly independent and form a partition of unity. These properties, coupled with local refinement, make this class of T-splines appealing as a basis for isogeometric analysis. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:206 / 222
页数:17
相关论文
共 50 条
  • [1] Local refinement for analysis-suitable plus plus T-splines
    Zhang, Jingjing
    Li, Xin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 342 : 32 - 45
  • [2] Local spline projectors of analysis-suitable T-splines
    Xu, Hailun
    Kang, Hongmei
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2025, 462
  • [3] Characterization of analysis-suitable T-splines
    Bressan, Andrea
    Buffa, Annalisa
    Sangalli, Giancarlo
    COMPUTER AIDED GEOMETRIC DESIGN, 2015, 39 : 17 - 49
  • [4] SOME PROPERTIES FOR ANALYSIS-SUITABLE T-SPLINES
    Li, Xin
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2015, 33 (04) : 428 - 442
  • [5] Analysis-Suitable T-splines are Dual-Compatible
    da Veiga, L. Beirao
    Buffa, A.
    Cho, D.
    Sangalli, G.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 249 : 42 - 51
  • [6] Multivariate Analysis-Suitable T-Splines of Arbitrary Degree
    Hiniborch, Robin
    Morgenstern, Philipp
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2024, 24 (04) : 859 - 885
  • [7] Analysis-suitable T-splines: Characterization, refineability, and approximation
    Li, Xin
    Scott, M. A.
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2014, 24 (06): : 1141 - 1164
  • [8] Local Mesh Refinement and Coarsening Based on Analysis-Suitable T-Splines Surface and Its Application in Contact Problem
    Wang, Yue
    Yu, Zuqing
    Lan, Peng
    Lu, Nianli
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2022, 17 (10):
  • [9] Quasi-interpolation for analysis-suitable T-splines
    Kang, Hongmei
    Yong, Zhiguo
    Li, Xin
    COMPUTER AIDED GEOMETRIC DESIGN, 2022, 98
  • [10] BPX preconditioners for isogeometric analysis using analysis-suitable T-splines
    Cho, Durkbin
    Vazquez, Rafael
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (01) : 764 - 799