Quasi-interpolation for analysis-suitable T-splines

被引:4
|
作者
Kang, Hongmei [1 ]
Yong, Zhiguo [1 ]
Li, Xin [2 ]
机构
[1] Soochow Univ, Sch Math Sci, 1 Shizi Rd, Suzhou 215006, Jiangsu, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasi-interpolation; Quasi-interpolants; Marsden?s identity; Analysis-suitable T-splines; SURFACE RECONSTRUCTION; ISOGEOMETRIC ANALYSIS; LINEAR INDEPENDENCE; POLYNOMIAL SPLINES; LOCAL REFINEMENT; NURBS;
D O I
10.1016/j.cagd.2022.102147
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a novel local approximation method for analysis-suitable T-spline (AS T-spline) spaces via quasi-interpolation. The quasi-interpolants are defined as linear combination of the approximated function's values at appropriately chosen points. Benefited from the inherent nice properties of AS T-splines, the proposed quasi-interpolants can reproduce polynomials up to the same degree of AS T-spline spaces and can provide optimal approximation order. Some numerical examples of specific quasi-interpolants for bi-cubic AS T-splines are investigated to show the stability and efficiency. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Quasi-interpolation by splines on the uniform knot sets
    Leetma, E.
    Vainikko, G.
    MATHEMATICAL MODELLING AND ANALYSIS, 2007, 12 (01) : 107 - 120
  • [22] A NATURAL FORMULATION OF QUASI-INTERPOLATION BY MULTIVARIATE SPLINES
    CHUI, CK
    DIAMOND, H
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 99 (04) : 643 - 646
  • [23] Quasi-interpolation in isogeometric analysis based on generalized B-splines
    Costantini, Paolo
    Manni, Carla
    Pelosi, Francesca
    Sampoli, M. Lucia
    COMPUTER AIDED GEOMETRIC DESIGN, 2010, 27 (08) : 656 - 668
  • [24] C2 interpolation T-splines
    Zhu, Yuanpeng
    Han, Xuli
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 362
  • [25] Non-uniform C1 patches around extraordinary points with applications to analysis-suitable unstructured T-splines
    Yang, Jiaming
    Zhao, Gang
    Wang, Wei
    Du, Xiaoxiao
    Zuo, Chao
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 405
  • [26] GLOBALLY STRUCTURED THREE-DIMENSIONAL ANALYSIS-SUITABLE T-SPLINES: DEFINITION, LINEAR INDEPENDENCE AND m-GRADED LOCAL REFINEMENT
    Morgenstern, Philipp
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (04) : 2163 - 2186
  • [27] QUASI-INTERPOLATION BY THIN-PLATE SPLINES ON A SQUARE
    BEATSON, RK
    LIGHT, WA
    CONSTRUCTIVE APPROXIMATION, 1993, 9 (04) : 407 - 433
  • [28] de Boor-suitable (DS) T-splines
    Zhang, Yang
    Pataranutaporn, Visit
    Goldman, Ron
    GRAPHICAL MODELS, 2018, 97 : 40 - 49
  • [29] Generator,multiquadric generator,quasi-interpolation and multiquadric quasi-interpolation
    WU Zong-min MA Li-min Shanghai Key Laboratory for Contemporary Applied Mathematics.School of Mathematical Sciences
    Applied Mathematics:A Journal of Chinese Universities, 2011, (04) : 390 - 400
  • [30] Isogeometric analysis using T-splines
    Bazilevs, Y.
    Calo, V. M.
    Cottrell, J. A.
    Evans, J. A.
    Hughes, T. J. R.
    Lipton, S.
    Scott, M. A.
    Sederberg, T. W.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2010, 199 (5-8) : 229 - 263