Quasi-interpolation for analysis-suitable T-splines

被引:4
|
作者
Kang, Hongmei [1 ]
Yong, Zhiguo [1 ]
Li, Xin [2 ]
机构
[1] Soochow Univ, Sch Math Sci, 1 Shizi Rd, Suzhou 215006, Jiangsu, Peoples R China
[2] Univ Sci & Technol China, Sch Math Sci, 96 Jinzhai Rd, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Quasi-interpolation; Quasi-interpolants; Marsden?s identity; Analysis-suitable T-splines; SURFACE RECONSTRUCTION; ISOGEOMETRIC ANALYSIS; LINEAR INDEPENDENCE; POLYNOMIAL SPLINES; LOCAL REFINEMENT; NURBS;
D O I
10.1016/j.cagd.2022.102147
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We propose a novel local approximation method for analysis-suitable T-spline (AS T-spline) spaces via quasi-interpolation. The quasi-interpolants are defined as linear combination of the approximated function's values at appropriately chosen points. Benefited from the inherent nice properties of AS T-splines, the proposed quasi-interpolants can reproduce polynomials up to the same degree of AS T-spline spaces and can provide optimal approximation order. Some numerical examples of specific quasi-interpolants for bi-cubic AS T-splines are investigated to show the stability and efficiency. (C) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] T-splines and T-NURCCs
    Sederberg, TN
    Zheng, JM
    Bakenov, A
    Nasri, A
    ACM TRANSACTIONS ON GRAPHICS, 2003, 22 (03): : 477 - 484
  • [42] Locally Refined T-splines
    Chen, L.
    de Borst, R.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2018, 114 (06) : 637 - 659
  • [43] Deal.t: an implementation of multivariate analysis suitable T-splines within the deal.ii framework
    Beuchler, Sven
    Hiniborch, Robin
    Morgenstern, Philipp
    ENGINEERING WITH COMPUTERS, 2024, 40 (06) : 3901 - 3928
  • [44] Trigonometric generalized T-splines
    Bracco, Cesare
    Berdinsky, Dmitry
    Cho, Durkbin
    Oh, Min-jae
    Kim, Tae-wan
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 268 : 540 - 556
  • [45] On degree elevation of T-splines
    Zhang, Jingjing
    Li, Xin
    COMPUTER AIDED GEOMETRIC DESIGN, 2016, 46 : 16 - 29
  • [46] Quasi-interpolation operators on hexagonal grids with high approximation orders in spaces of polyharmonic splines
    Rossini, Milvia
    Volonte, Elena
    APPLIED MATHEMATICS AND COMPUTATION, 2016, 272 : 223 - 234
  • [47] Quasi-interpolation in the Fourier algebra
    Feichtinger, Hans G.
    Kaiblinger, Norbert
    JOURNAL OF APPROXIMATION THEORY, 2007, 144 (01) : 103 - 118
  • [48] Quasi-interpolation and outliers removal
    Amir, Anat
    Levin, David
    NUMERICAL ALGORITHMS, 2018, 78 (03) : 805 - 825
  • [49] A quasi-interpolation scheme for periodic data based on multiquadric trigonometric B-splines
    Gao, Wenwu
    Wu, Zongmin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 271 : 20 - 30
  • [50] Properties of generators of quasi-interpolation operators of high approximation orders in spaces of polyharmonic splines
    Bozzini, Mira
    Rossini, Milvia
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 267 : 96 - 106