` Reference curves based on non-parametric quantile regression

被引:39
|
作者
Gannoun, A [1 ]
Girard, S
Guinot, C
Saracco, J
机构
[1] Univ Montpellier 2, Lab Probabil & Stat, Pl Eugene Bataillon, F-34095 Montpellier 5, France
[2] CERIES, F-92521 Neuilly sur Seine, France
关键词
reference curves; conditional quantiles; non-parametric estimation; kennel estimation; local constant kennel estimation; double kennel estimation;
D O I
10.1002/sim.1226
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Reference curves which take time into account, such as those for age, are often required in medicine, but simple systematic and efficient statistical methods for constructing them are lacking. Classical methods are based on parametric fitting (polynomial curves). Semi-parametric methods are also widely used especially in Europe. Here, we propose a new methodology for the estimation of reference intervals for data sets, based on non-parametric estimation of conditional quantiles. The derived methods should be applicable to all clinical (or more generally biological) variables that are measured on a continuous quantitative scale. As an example, we analyse a data set collected to establish reference curves for biophysical properties of the skin of healthy French women. The results are compared to those obtained with Royston's polynomial parametric method and the semi-parametric LMS approach. Copyright (C) 2002 John Wiley Sons, Ltd.
引用
收藏
页码:3119 / 3135
页数:17
相关论文
共 50 条
  • [21] Non-Parametric Regression and Riesz Estimators
    Kountzakis, Christos
    Tsachouridou-Papadatou, Vasileia
    [J]. AXIOMS, 2023, 12 (04)
  • [22] Non-parametric Regression for Circular Responses
    Di Marzio, Marco
    Panzera, Agnese
    Taylor, Charles C.
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2013, 40 (02) : 238 - 255
  • [23] A NOTE ON NON-PARAMETRIC CENSORED REGRESSION
    MCLEISH, DL
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1983, 18 (01) : 1 - 6
  • [24] NON-PARAMETRIC ESTIMATION OF A REGRESSION FUNCION
    SCHUSTER, EF
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1968, 39 (02): : 695 - +
  • [25] Parametrically guided non-parametric regression
    Glad, IK
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 1998, 25 (04) : 649 - 668
  • [26] Non-parametric regression with wavelet kernels
    Rakotomamonjy, A
    Mary, X
    Canu, S
    [J]. APPLIED STOCHASTIC MODELS IN BUSINESS AND INDUSTRY, 2005, 21 (02) : 153 - 163
  • [27] Non-parametric regression for compositional data
    Di Marzio, Marco
    Panzera, Agnese
    Venieri, Catia
    [J]. STATISTICAL MODELLING, 2015, 15 (02) : 113 - 133
  • [28] Testing for additivity in non-parametric regression
    Zhang, Yichi
    Staicu, Ana-Maria
    Maity, Arnab
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2016, 44 (04): : 445 - 462
  • [29] Imitation Learning with Non-Parametric Regression
    Vaandrager, Maarten
    Babuska, Robert
    Busoniu, Lucian
    Lopes, Gabriel A. D.
    [J]. 2012 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION, QUALITY AND TESTING, ROBOTICS, THETA 18TH EDITION, 2012, : 91 - 96
  • [30] Testing critical points of non-parametric regression curves: application to the management of stalked barnacles
    Sestelo, Marta
    Roca-Pardinas, Javier
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2019, 68 (04) : 1051 - 1070