Potential of Genome Editing to Improve Aquaculture Breeding and Production

被引:116
|
作者
Gratacap, Remi L. [1 ]
Wargelius, Anna [2 ]
Edvardsen, Rolf Brudvik [2 ]
Houston, Ross D. [1 ]
机构
[1] Univ Edinburgh, Roslin Inst, Easter Bush Campus, Roslin EH25 9RG, Midlothian, Scotland
[2] Inst Marine Res, POB 1870, NO-5817 Bergen, Norway
基金
英国生物技术与生命科学研究理事会;
关键词
SALMO-SALAR L; INFECTIOUS PANCREATIC NECROSIS; LICE LEPEOPHTHEIRUS-SALMONIS; SCALE CRISPR-CAS9 KNOCKOUT; TRANSCRIPTIONAL ACTIVATION; ATLANTIC; EFFICIENT; GENE; RESISTANCE; DNA;
D O I
10.1016/j.tig.2019.06.006
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Aquaculture is the fastest growing food production sector and is rapidly becoming the primary source of seafood for human diets. Selective breeding programs are enabling genetic improvement of production traits, such as disease resistance, but progress is limited by the heritability of the trait and generation interval of the species. New breeding technologies, such as genome editing using CRISPR/Cas9 have the potential to expedite sustainable genetic improvement in aquaculture. Genome editing can rapidly introduce favorable changes to the genome, such as fixing alleles at existing trait loci, creating de novo alleles, or introducing alleles from other strains or species. The high fecundity and external fertilization of most aquaculture species can facilitate genome editing for research and application at a scale that is not possible in farmed terrestrial animals.
引用
收藏
页码:672 / 684
页数:13
相关论文
共 50 条
  • [41] New era of precision plant breeding using genome editing
    Kim, Jeong-Il
    Kim, Jae-Yean
    PLANT BIOTECHNOLOGY REPORTS, 2019, 13 (05) : 419 - 421
  • [42] Genome editing in plants: a tool for precision breeding and functional genomics
    Chinnusamy, Viswanathan
    Schepler-Luu, Van
    Mangrauthia, Satendra K.
    Ramesh, S. V.
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2023, 32 (04) : 831 - 845
  • [43] Perspectives on the Application of Genome-Editing Technologies in Crop Breeding
    Hua, Kai
    Zhang, Jinshan
    Botella, Jose Ramon
    Ma, Changle
    Kong, Fanjiang
    Liu, Baohui
    Zhu, Jian-Kang
    MOLECULAR PLANT, 2019, 12 (08) : 1047 - 1059
  • [44] Application of Genome Editing in Tomato Breeding: Mechanisms, Advances, and Prospects
    Salava, Hymavathi
    Thula, Sravankumar
    Mohan, Vijee
    Kumar, Rahul
    Maghuly, Fatemeh
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2021, 22 (02) : 1 - 41
  • [45] Genome editing in plants: a tool for precision breeding and functional genomics
    Viswanathan Chinnusamy
    Van Schepler-Luu
    Satendra K. Mangrauthia
    S. V. Ramesh
    Journal of Plant Biochemistry and Biotechnology, 2023, 32 : 657 - 660
  • [46] Genome Editing to Improve Abiotic Stress Responses in Plants
    Osakabe, Yuriko
    Osakabe, Keishi
    GENE EDITING IN PLANTS, 2017, 149 : 99 - 109
  • [47] Strategies to improve genome editing efficiency in crop plants
    Aravind, B.
    Molla, Kutubuddin
    Mangrauthia, Satendra K.
    Mohannath, Gireesha
    JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY, 2023, 32 (04) : 661 - 672
  • [48] Strategies to improve genome editing efficiency in crop plants
    B. Aravind
    Kutubuddin Molla
    Satendra K. Mangrauthia
    Gireesha Mohannath
    Journal of Plant Biochemistry and Biotechnology, 2023, 32 : 661 - 672
  • [49] Alternative CRISPR system could improve genome editing
    Heidi Ledford
    Nature, 2015, 526 (7571) : 17 - 17
  • [50] New proteins may expand, improve genome editing
    Pennisi, Elizabeth
    SCIENCE, 2015, 350 (6256) : 16 - 17