Potential of Genome Editing to Improve Aquaculture Breeding and Production

被引:116
|
作者
Gratacap, Remi L. [1 ]
Wargelius, Anna [2 ]
Edvardsen, Rolf Brudvik [2 ]
Houston, Ross D. [1 ]
机构
[1] Univ Edinburgh, Roslin Inst, Easter Bush Campus, Roslin EH25 9RG, Midlothian, Scotland
[2] Inst Marine Res, POB 1870, NO-5817 Bergen, Norway
基金
英国生物技术与生命科学研究理事会;
关键词
SALMO-SALAR L; INFECTIOUS PANCREATIC NECROSIS; LICE LEPEOPHTHEIRUS-SALMONIS; SCALE CRISPR-CAS9 KNOCKOUT; TRANSCRIPTIONAL ACTIVATION; ATLANTIC; EFFICIENT; GENE; RESISTANCE; DNA;
D O I
10.1016/j.tig.2019.06.006
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Aquaculture is the fastest growing food production sector and is rapidly becoming the primary source of seafood for human diets. Selective breeding programs are enabling genetic improvement of production traits, such as disease resistance, but progress is limited by the heritability of the trait and generation interval of the species. New breeding technologies, such as genome editing using CRISPR/Cas9 have the potential to expedite sustainable genetic improvement in aquaculture. Genome editing can rapidly introduce favorable changes to the genome, such as fixing alleles at existing trait loci, creating de novo alleles, or introducing alleles from other strains or species. The high fecundity and external fertilization of most aquaculture species can facilitate genome editing for research and application at a scale that is not possible in farmed terrestrial animals.
引用
收藏
页码:672 / 684
页数:13
相关论文
共 50 条
  • [31] Towards social acceptance of plant breeding by genome editing
    Araki, Motoko
    Ishii, Tetsuya
    TRENDS IN PLANT SCIENCE, 2015, 20 (03) : 145 - 149
  • [32] Precision plant breeding using genome editing technologies
    Caixia Gao
    Transgenic Research, 2019, 28 : 53 - 55
  • [33] Breeding by Design for Functional Rice with Genome Editing Technologies
    Yan, Chunxue
    Meng, Huicong
    Pei, Yanxin
    Sun, Wei
    Zhang, Jinshan
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2025, (215):
  • [34] Recent developments in genome editing and applications in plant breeding
    Jung, Christian
    Capistrano-Gossmann, Gina
    Braatz, Janina
    Sashidhar, Niharika
    Melzer, Siegbert
    PLANT BREEDING, 2018, 137 (01) : 1 - 9
  • [35] Advancing fish breeding in aquaculture through genome functional annotation
    Johnston, Ian A.
    Kent, Matthew P.
    Boudinot, Pierre
    Looseley, Mark
    Bargelloni, Luca
    Faggion, Sara
    Merino, Gabriela A.
    Ilsley, Garth R.
    Bobe, Julien
    Tsigenopoulos, Costas S.
    Robertson, Joseph
    Harrison, Peter W.
    Martinez, Paulino
    Robledo, Diego
    Macqueen, Daniel J.
    Lien, Sigbj orn
    AQUACULTURE, 2024, 583
  • [36] Risk and safety considerations 2: genetic variations and potential risks-traditional breeding and genome editing
    Tabei, Yutaka
    TRANSGENIC RESEARCH, 2019, 28 (Suppl 2) : 119 - 124
  • [37] Genes and genome editing tools for breeding desirable phenotypes in ornamentals
    A. Giovannini
    M. Laura
    B. Nesi
    M. Savona
    T. Cardi
    Plant Cell Reports, 2021, 40 : 461 - 478
  • [38] Genes and genome editing tools for breeding desirable phenotypes in ornamentals
    Giovannini, A.
    Laura, M.
    Nesi, B.
    Savona, M.
    Cardi, T.
    PLANT CELL REPORTS, 2021, 40 (03) : 461 - 478
  • [39] CRISPR/Cas Genome Editing and Precision Plant Breeding in Agriculture
    Chen, Kunling
    Wang, Yanpeng
    Zhang, Rui
    Zhang, Huawei
    Gao, Caixia
    ANNUAL REVIEW OF PLANT BIOLOGY, VOL 70, 2019, 70 : 667 - 697
  • [40] New era of precision plant breeding using genome editing
    Jeong-Il Kim
    Jae-Yean Kim
    Plant Biotechnology Reports, 2019, 13 : 419 - 421