Secuer: Ultrafast, scalable and accurate clustering of single-cell RNA-seq data

被引:5
|
作者
Wei, Nana [1 ]
Nie, Yating [1 ]
Liu, Lin [2 ]
Zheng, Xiaoqi [3 ,4 ]
Wu, Hua-Jun [5 ,6 ]
机构
[1] Shanghai Normal Univ, Dept Math, Shanghai, Peoples R China
[2] Shanghai Jiao Tong Univ, SJTU Yale Joint Ctr Biostat & Data Sci, CMA Shanghai, Inst Nat Sci,MOE LSC,Sch Math Sci, Shanghai, Peoples R China
[3] Shanghai Artificial Intelligence Lab, Shanghai, Peoples R China
[4] Shanghai Jiao Tong Univ, Ctr Single Cell Omics, Sch Publ Hlth, Sch Med, Shanghai, Peoples R China
[5] Peking Univ Hlth Sci Ctr, Ctr Precis Med Multiom Res, Sch Basic Med Sci, Beijing, Peoples R China
[6] Peking Univ Canc Hosp & Inst, Beijing, Peoples R China
基金
上海市自然科学基金; 中国国家自然科学基金; 国家重点研发计划;
关键词
HETEROGENEITY; TRANSCRIPTOMES; FATE;
D O I
10.1371/journal.pcbi.1010753
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Identifying cell clusters is a critical step for single-cell transcriptomics study. Despite the numerous clustering tools developed recently, the rapid growth of scRNA-seq volumes prompts for a more (computationally) efficient clustering method. Here, we introduce Secuer, a Scalable and Efficient speCtral clUstERing algorithm for scRNA-seq data. By employing an anchor-based bipartite graph representation algorithm, Secuer enjoys reduced runtime and memory usage over one order of magnitude for datasets with more than 1 million cells. Meanwhile, Secuer also achieves better or comparable accuracy than competing methods in small and moderate benchmark datasets. Furthermore, we showcase that Secuer can also serve as a building block for a new consensus clustering method, Secuer-consensus, which again improves the runtime and scalability of state-of-the-art consensus clustering methods while also maintaining the accuracy. Overall, Secuer is a versatile, accurate, and scalable clustering framework suitable for small to ultra-large single-cell clustering tasks. Author summary Recently, single-cell RNA sequencing (scRNA-seq) has enabled profiling of thousands to millions of cells, spurring the development of efficient clustering algorithms for large or ultra-large datasets. In this work, we developed an ultrafast clustering method, Secuer, for small to ultra-large scRNA-seq data. Using simulation and real datasets, we demonstrated that Secuer yields high accuracy, while saving runtime and memory usage by orders of magnitude, and that it can be efficiently scaled up to ultra-large datasets. Additionally, with Secuer as a subroutine, we proposed Secuer-consensus, a consensus clustering algorithm. Our results show that Secuer-consensus performs better in terms of clustering accuracy and runtime.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] SC3: Consensus clustering of single-cell RNA-seq data
    Kiselev V.Y.
    Kirschner K.
    Schaub M.T.
    Andrews T.
    Yiu A.
    Chandra T.
    Natarajan K.N.
    Reik W.
    Barahona M.
    Green A.R.
    Hemberg M.
    Nature Methods, 2017, 14 (5) : 483 - 486
  • [32] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Peng, Tao
    Zhu, Qin
    Yin, Penghang
    Tan, Kai
    GENOME BIOLOGY, 2019, 20 (1)
  • [33] SCRABBLE: single-cell RNA-seq imputation constrained by bulk RNA-seq data
    Tao Peng
    Qin Zhu
    Penghang Yin
    Kai Tan
    Genome Biology, 20
  • [34] An interpretable framework for clustering single-cell RNA-Seq datasets
    Jesse M. Zhang
    Jue Fan
    H. Christina Fan
    David Rosenfeld
    David N. Tse
    BMC Bioinformatics, 19
  • [35] scMAE: a masked autoencoder for single-cell RNA-seq clustering
    Fang, Zhaoyu
    Zheng, Ruiqing
    Li, Min
    BIOINFORMATICS, 2024, 40 (01)
  • [36] Single-cell RNA-seq clustering: datasets, models, and algorithms
    Peng, Lihong
    Tian, Xiongfei
    Tian, Geng
    Xu, Junlin
    Huang, Xin
    Weng, Yanbin
    Yang, Jialiang
    Zhou, Liqian
    RNA BIOLOGY, 2020, 17 (06) : 765 - 783
  • [37] Improving Single-Cell RNA-seq Clustering by Integrating Pathways
    Zhang, Chenxing
    Gao, Lin
    Wang, Bingbo
    Gao, Yong
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [38] SCCLRR: A Robust Computational Method for Accurate Clustering Single Cell RNA-Seq Data
    Zhang, Wei
    Li, Yuanyuan
    Zou, Xiufen
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (01) : 247 - 256
  • [39] An interpretable framework for clustering single-cell RNA-Seq datasets
    Zhang, Jesse M.
    Fan, Jue
    Fan, Christina
    Rosenfeld, David
    Tse, David N.
    BMC BIOINFORMATICS, 2018, 19
  • [40] Fast and accurate single-cell RNA-seq analysis by clustering of transcript-compatibility counts
    Vasilis Ntranos
    Govinda M. Kamath
    Jesse M. Zhang
    Lior Pachter
    David N. Tse
    Genome Biology, 17