Dynamics of Low-Intermediate-High-Confinement Transitions in Toroidal Plasmas

被引:112
|
作者
Cheng, J. [1 ]
Dong, J. Q. [1 ,2 ]
Itoh, K. [3 ]
Yan, L. W. [1 ]
Xu, M. [1 ]
Zhao, K. J. [1 ,4 ]
Hong, W. Y. [1 ]
Huang, Z. H. [1 ]
Ji, X. Q. [1 ]
Zhong, W. L. [1 ]
Yu, D. L. [1 ]
Itoh, S. -I. [5 ]
Nie, L. [1 ,6 ]
Kong, D. F. [6 ]
Lan, T. [6 ]
Liu, A. D. [6 ]
Zou, X. L. [7 ]
Yang, Q. W. [1 ]
Ding, X. T. [1 ]
Duan, X. R. [1 ]
Liu, Yong [1 ]
机构
[1] Southwestern Inst Phys, Chengdu 610041, Peoples R China
[2] Zhejiang Univ, Inst Fus Theory & Simulat, Hangzhou 310027, Peoples R China
[3] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
[4] Natl Fus Res Inst, WCI Ctr Fus Theory, Taejon 305333, South Korea
[5] Kyushu Univ, Appl Mech Res Inst, Fukuoka 8168580, Japan
[6] USTC, Dept Modern Phys, Hefei 230026, Peoples R China
[7] CEA, IRFM, F-13108 St Paul Les Durance, France
关键词
H-MODE TRANSITION; TOKAMAK; BEHAVIOR;
D O I
10.1103/PhysRevLett.110.265002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamic features of the low-intermediate-high-(L-I-H) confinement transitions on HL-2A tokamak are presented. Here we report the discovery of two types of limit cycles (dubbed type-Y and type-J), which show opposite temporal ordering between the radial electric field and turbulence intensity. In type-Y, which appears first after an L-I transition, the turbulence grows first, followed by the localized electric field. In contrast, the electric field leads type-J. The turbulence-induced zonal flow and pressure-gradient-induced drift play essential roles in the two types of limit cycles, respectively. The condition of transition between types-Y and -J is studied in terms of the normalized radial electric field. An I-H transition is demonstrated to occur only from type-J.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Nonlinear dynamics of Alfven eigenmodes in toroidal plasmas
    Univ of California, Irvine, United States
    Plasma Phys Controlled Fusion, 11 (1823-1829):
  • [22] Toroidal rotation dynamics in KSTAR ohmic plasmas
    Lee, S. G.
    Seol, J.
    Lee, H. H.
    NUCLEAR FUSION, 2022, 62 (10)
  • [23] Nonlinear dynamics of Alfven eigenmodes in toroidal plasmas
    Chen, L
    Zonca, F
    Santoro, RA
    Hu, G
    PLASMA PHYSICS AND CONTROLLED FUSION, 1998, 40 (11) : 1823 - 1829
  • [24] Impurity toroidal rotation and transport in Alcator C-Mod ohmic high confinement mode plasmas
    Rice, JE
    Goetz, JA
    Granetz, RS
    Greenwald, MJ
    Hubbard, AE
    Hutchinson, IH
    Marmar, ES
    Mossessian, D
    Pedersen, TS
    Snipes, JA
    Terry, JL
    Wolfe, SM
    PHYSICS OF PLASMAS, 2000, 7 (05) : 1825 - 1830
  • [25] Resonant magnetic perturbations of edge-plasmas in toroidal confinement devices
    Evans, T. E.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2015, 57 (12)
  • [26] Parallel flow driven instability due to toroidal return flow in high-confinement mode plasmas
    Sasaki, M.
    Itoh, K.
    Kosuga, Y.
    Dong, J. Q.
    Inagaki, S.
    Kobayashi, T.
    Cheng, J.
    Zhao, K. J.
    Itch, S-I
    NUCLEAR FUSION, 2019, 59 (06)
  • [27] Phase Dynamics Criterion for Fast Relaxation of High-Confinement-Mode Plasmas
    Xi, P. W.
    Xu, X. Q.
    Diamond, P. H.
    PHYSICAL REVIEW LETTERS, 2014, 112 (08)
  • [28] Collisional dynamics of Er in turbulent plasmas in toroidal geometry
    Janhunen, S. J.
    Ogando, F.
    Heikkinen, J. A.
    Kiviniemi, T. P.
    Leerink, S.
    NUCLEAR FUSION, 2007, 47 (08) : 875 - 879
  • [29] Is it possible that MHD instability triggers a transition into the improved confinement regime of toroidal plasmas?
    S. V. Shchepetov
    D. G. Vasilkov
    Plasma Physics Reports, 2017, 43 : 720 - 725
  • [30] Self-sustained turbulence and H-mode confinement in toroidal plasmas
    Itoh, SI
    Itoh, K
    Yagi, M
    Fukuyama, A
    PLASMA PHYSICS AND CONTROLLED FUSION, 1996, 38 (10) : 1743 - 1762