Dynamics of Low-Intermediate-High-Confinement Transitions in Toroidal Plasmas

被引:112
|
作者
Cheng, J. [1 ]
Dong, J. Q. [1 ,2 ]
Itoh, K. [3 ]
Yan, L. W. [1 ]
Xu, M. [1 ]
Zhao, K. J. [1 ,4 ]
Hong, W. Y. [1 ]
Huang, Z. H. [1 ]
Ji, X. Q. [1 ]
Zhong, W. L. [1 ]
Yu, D. L. [1 ]
Itoh, S. -I. [5 ]
Nie, L. [1 ,6 ]
Kong, D. F. [6 ]
Lan, T. [6 ]
Liu, A. D. [6 ]
Zou, X. L. [7 ]
Yang, Q. W. [1 ]
Ding, X. T. [1 ]
Duan, X. R. [1 ]
Liu, Yong [1 ]
机构
[1] Southwestern Inst Phys, Chengdu 610041, Peoples R China
[2] Zhejiang Univ, Inst Fus Theory & Simulat, Hangzhou 310027, Peoples R China
[3] Natl Inst Nat Sci, Natl Inst Fus Sci, Toki, Gifu 5095292, Japan
[4] Natl Fus Res Inst, WCI Ctr Fus Theory, Taejon 305333, South Korea
[5] Kyushu Univ, Appl Mech Res Inst, Fukuoka 8168580, Japan
[6] USTC, Dept Modern Phys, Hefei 230026, Peoples R China
[7] CEA, IRFM, F-13108 St Paul Les Durance, France
关键词
H-MODE TRANSITION; TOKAMAK; BEHAVIOR;
D O I
10.1103/PhysRevLett.110.265002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The dynamic features of the low-intermediate-high-(L-I-H) confinement transitions on HL-2A tokamak are presented. Here we report the discovery of two types of limit cycles (dubbed type-Y and type-J), which show opposite temporal ordering between the radial electric field and turbulence intensity. In type-Y, which appears first after an L-I transition, the turbulence grows first, followed by the localized electric field. In contrast, the electric field leads type-J. The turbulence-induced zonal flow and pressure-gradient-induced drift play essential roles in the two types of limit cycles, respectively. The condition of transition between types-Y and -J is studied in terms of the normalized radial electric field. An I-H transition is demonstrated to occur only from type-J.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Is it possible that MHD instability triggers a transition into the improved confinement regime of toroidal plasmas?
    Shchepetov, S. V.
    Vasilkov, D. G.
    PLASMA PHYSICS REPORTS, 2017, 43 (07) : 720 - 725
  • [32] Formation and structure of transport barriers during confinement transitions in toroidal plasma
    Punzmann, H
    Shats, MG
    PHYSICAL REVIEW LETTERS, 2004, 93 (12) : 125003 - 1
  • [33] Long-time confinement of toroidal electron plasmas in Proto-RT
    Saitoh, H
    Yoshida, Z
    Himura, H
    Morikawa, J
    Fukao, M
    Wakabayashi, H
    NON-NEUTRAL PLASMA PHYSICS V, 2003, 692 : 326 - 331
  • [34] Confinement of pure-electron plasmas in a toroidal magnetic-surface configuration
    Saitoh, H
    Yoshida, Z
    Nakashima, C
    Himura, H
    Morikawa, J
    Fukao, M
    PHYSICAL REVIEW LETTERS, 2004, 92 (25) : 255005 - 1
  • [35] Electron plasmas: Confinement and mode structure in a small aspect ratio toroidal experiment
    Pahari, S.
    Ramachandran, H. S.
    John, P. I.
    PHYSICS OF PLASMAS, 2006, 13 (09)
  • [36] EQUILIBRIUM OF TOROIDAL HIGH-BETA PLASMAS
    YOSHIKAWA, S
    PHYSICS OF FLUIDS, 1968, 11 (04) : 893 - +
  • [37] HIGH-BETA PLASMAS IN TOROIDAL SURMACS
    SCHUMACHER, RW
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (07): : 887 - 888
  • [38] OBSERVATIONS OF HIGH-BETA TOROIDAL PLASMAS
    HALLE, JH
    KELLMAN, AG
    POST, RS
    PRAGER, SC
    STRAIT, EJ
    ZARNSTORFF, MC
    PHYSICAL REVIEW LETTERS, 1981, 46 (21) : 1394 - 1397
  • [39] Stimulated effect of SMBI on low-to-high confinement transition of tokamak plasmas
    Zhong, W. L.
    Zou, X. L.
    Liang, A. S.
    Feng, B. B.
    Xiao, G. L.
    Chen, C. Y.
    Shi, Z. B.
    Xiao, W. W.
    Yang, Z. C.
    Shi, P. W.
    Wang, Z. X.
    Jiang, M.
    Wen, J.
    Fang, K. R.
    Yin, J.
    Song, X. M.
    Chen, W.
    Hao, G. Z.
    Ji, X. Q.
    Yan, L. W.
    Ding, X. T.
    Dong, J. Q.
    Yu, D. L.
    Liu, Yi
    Yang, Q. W.
    Xu, M.
    Duan, X. R.
    NUCLEAR FUSION, 2020, 60 (08)
  • [40] A FLUID DESCRIPTION FOR TOROIDAL LOW-BETA CONFINEMENT
    JOHNSON, JL
    WINSOR, NK
    DAWSON, JM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1968, 13 (12): : 1747 - &