The critical point equation on Kenmotsu and almost Kenmotsu manifolds

被引:5
|
作者
Patra, Dhriti Sundar [1 ]
Ghosh, Amalendu [2 ]
Bhattacharyya, Arindam [3 ]
机构
[1] Birla Inst Technol Mesra, Dept Math, Ranchi 835215, Bihar, India
[2] Chandernagore Coll, Dept Math, Hooghly 712136, WB, India
[3] Jadavpur Univ, Dept Math, 188 Raja SC Mullick Rd, Kolkata 700032, India
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2020年 / 97卷 / 1-2期
关键词
total scalar curvature functional; the critical point equation; Kenmotsu manifold; almost Kenmotsu manifold; generalized nullity distribution; TOTAL SCALAR CURVATURE;
D O I
10.5486/PMD.2020.8702
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the critical point equation (shortly, CPE) within the framework of Kenmotsu and almost Kenmotsu manifolds. First, we prove that a complete Kenmotsu metric satisfying the CPE is Einstein and locally isometric to the hyperbolic space H2n+1. In the case of Kenmotsu manifolds, it is possible to determine the potential function explicitly (locally). We also provide some examples of Kenmotsu and almost Kenmotsu manifolds that satisfy the CPE.
引用
收藏
页码:85 / 99
页数:15
相关论文
共 50 条