total scalar curvature functional;
the critical point equation;
Kenmotsu manifold;
almost Kenmotsu manifold;
generalized nullity distribution;
TOTAL SCALAR CURVATURE;
D O I:
10.5486/PMD.2020.8702
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
In this paper, we study the critical point equation (shortly, CPE) within the framework of Kenmotsu and almost Kenmotsu manifolds. First, we prove that a complete Kenmotsu metric satisfying the CPE is Einstein and locally isometric to the hyperbolic space H2n+1. In the case of Kenmotsu manifolds, it is possible to determine the potential function explicitly (locally). We also provide some examples of Kenmotsu and almost Kenmotsu manifolds that satisfy the CPE.
机构:
Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
Wang, Yaning
Liu, Ximin
论文数: 0引用数: 0
h-index: 0
机构:
Dalian Univ Technol, Sch Math Sci, Dalian 116024, Liaoning, Peoples R ChinaHenan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China
机构:
Henan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R ChinaHenan Normal Univ, Sch Math & Informat Sci, Xinxiang 453007, Henan, Peoples R China