The p-Laplacian on the Sierpinski gasket

被引:23
|
作者
Strichartz, RS
Wong, C
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] Chinese Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
10.1088/0951-7715/17/2/014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a nonlinear p-Laplacian operator, Delta(p), on the Sierpinski gasket, for 1 < p < infinity, generalizing the linear Laplacian (p = 2) of Kigami. In the nonlinear case, the definition only gives a multivalued operator, although under mild conjectures it becomes single valued. The main result is that we can always solve Delta(p)u = f with prescribed boundary values by solving an equivalent minimization problem. We use this to obtain numerical approximations to the solution. We also study properties of p-harmonic functions.
引用
收藏
页码:595 / 616
页数:22
相关论文
共 50 条
  • [21] LOWER ROUNDS FOR THE FIRST EIGENVALUES OF THE p-LAPLACIAN AND THE WEIGHTED p-LAPLACIAN
    Sun, He-Jun
    Han, Chengyue
    Zeng, Lingzhong
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (02): : 585 - 596
  • [22] Variations on the p-Laplacian
    Kawohl, Bernd
    [J]. NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS, 2011, 540 : 35 - 46
  • [23] On the eigenvectors of p-Laplacian
    Luo, Dijun
    Huang, Heng
    Ding, Chris
    Nie, Feiping
    [J]. MACHINE LEARNING, 2010, 81 (01) : 37 - 51
  • [24] On the eigenvectors of p-Laplacian
    Dijun Luo
    Heng Huang
    Chris Ding
    Feiping Nie
    [J]. Machine Learning, 2010, 81 : 37 - 51
  • [25] Bounce on a p-Laplacian
    Mugnai, D
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2003, 2 (03) : 371 - 379
  • [26] Laplacian growth and sandpiles on the Sierpinski gasket: limit shape universality and exact solutions
    Chen, Joe P.
    Kudler-Flam, Jonah
    [J]. ANNALES DE L INSTITUT HENRI POINCARE D, 2020, 7 (04): : 585 - 664
  • [27] The range of the p-Laplacian
    Binding, PA
    Drabek, P
    Huang, YX
    [J]. APPLIED MATHEMATICS LETTERS, 1997, 10 (06) : 77 - 82
  • [28] A noncommutative Sierpinski gasket
    Cipriani, Fabio E. G.
    Guido, Daniele
    Isola, Tommaso
    Sauvageot, Jean-Luc
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2022, 283 (05)
  • [29] GEODESICS OF THE SIERPINSKI GASKET
    Saltan, Mustafa
    Ozdemir, Yunus
    Demir, Bunyamin
    [J]. FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2018, 26 (03)
  • [30] Sandpiles on a Sierpinski gasket
    Daerden, F
    Vanderzande, C
    [J]. PHYSICA A, 1998, 256 (3-4): : 533 - 546