The p-Laplacian on the Sierpinski gasket

被引:23
|
作者
Strichartz, RS
Wong, C
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
[2] Chinese Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
10.1088/0951-7715/17/2/014
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define a nonlinear p-Laplacian operator, Delta(p), on the Sierpinski gasket, for 1 < p < infinity, generalizing the linear Laplacian (p = 2) of Kigami. In the nonlinear case, the definition only gives a multivalued operator, although under mild conjectures it becomes single valued. The main result is that we can always solve Delta(p)u = f with prescribed boundary values by solving an equivalent minimization problem. We use this to obtain numerical approximations to the solution. We also study properties of p-harmonic functions.
引用
收藏
页码:595 / 616
页数:22
相关论文
共 50 条
  • [41] On the Fredholm alternative for the p-Laplacian
    Yang, XJ
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2004, 153 (02) : 537 - 556
  • [42] On the Evolutionary Fractional p-Laplacian
    Puhst, Dimitri
    [J]. APPLIED MATHEMATICS RESEARCH EXPRESS, 2015, (02) : 253 - 273
  • [43] Introducing the p-Laplacian spectra
    Cohen, Ido
    Gilboa, Guy
    [J]. SIGNAL PROCESSING, 2020, 167
  • [44] On the fractional p-Laplacian problems
    Choi, Q-Heung
    Jung, Tacksun
    [J]. JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)
  • [45] BMO estimates for the p-Laplacian
    Diening, L.
    Kaplicky, P.
    Schwarzacher, S.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (02) : 637 - 650
  • [46] Mixed eigenvalues of p-Laplacian
    Mu-Fa Chen
    Lingdi Wang
    Yuhui Zhang
    [J]. Frontiers of Mathematics in China, 2015, 10 : 249 - 274
  • [47] The spectrum of the periodic p-Laplacian
    Binding, Paul A.
    Rynne, Bryan P.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 235 (01) : 199 - 218
  • [48] On the first eigencurve of the p-Laplacian
    Elkhalil, A
    Touzani, A
    [J]. PARTIAL DIFFERENTIAL EQUATIONS, PROCEEDINGS, 2002, 229 : 195 - 205
  • [49] Weak perturbations of the p-Laplacian
    Tomas Ekholm
    Rupert L. Frank
    Hynek Kovařík
    [J]. Calculus of Variations and Partial Differential Equations, 2015, 53 : 781 - 801
  • [50] On the Fucik spectrum of the p-Laplacian
    Cuesta, M
    De Figueiredo, DG
    Gossez, JP
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 326 (06): : 681 - 684