The range of the p-Laplacian

被引:9
|
作者
Binding, PA
Drabek, P
Huang, YX
机构
[1] UNIV W BOHEMIA,DEPT MATH,PLZEN 30614,CZECH REPUBLIC
[2] UNIV MEMPHIS,DEPT MATH SCI,MEMPHIS,TN 38152
基金
加拿大自然科学与工程研究理事会;
关键词
the p-Laplacian; Fredholm alternative; range;
D O I
10.1016/S0893-9659(97)00108-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for lambda greater than or equal to 0, p greater than or equal to 3, there exists an open ball B subset of L-2(0, 1) such that the problem - (\ u'\(p-2)u')' -lambda \ u \(p-2)u = f, in (0,1), subject to certain separated boundary conditions on (0, 1), has a solution for f is an element of B.
引用
收藏
页码:77 / 82
页数:6
相关论文
共 50 条
  • [1] LOWER ROUNDS FOR THE FIRST EIGENVALUES OF THE p-LAPLACIAN AND THE WEIGHTED p-LAPLACIAN
    Sun, He-Jun
    Han, Chengyue
    Zeng, Lingzhong
    [J]. MATHEMATICAL INEQUALITIES & APPLICATIONS, 2020, 23 (02): : 585 - 596
  • [2] Variations on the p-Laplacian
    Kawohl, Bernd
    [J]. NONLINEAR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS, 2011, 540 : 35 - 46
  • [3] On the eigenvectors of p-Laplacian
    Luo, Dijun
    Huang, Heng
    Ding, Chris
    Nie, Feiping
    [J]. MACHINE LEARNING, 2010, 81 (01) : 37 - 51
  • [4] Bounce on a p-Laplacian
    Mugnai, D
    [J]. COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2003, 2 (03) : 371 - 379
  • [5] On the eigenvectors of p-Laplacian
    Dijun Luo
    Heng Huang
    Chris Ding
    Feiping Nie
    [J]. Machine Learning, 2010, 81 : 37 - 51
  • [6] Growing solutions of the fractional p-Laplacian equation in the Fast Diffusion range
    Luis Vazquez, Juan
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 214
  • [7] PERIODIC SOLUTIONS TO DUFFING TYPE p-LAPLACIAN EQUATION WITH SEVERAL p-LAPLACIAN OPERATORS
    Zongfu Zhou
    Li Zeng
    Baorui Jia
    Jianzhong Xu
    [J]. Annals of Applied Mathematics, 2013, 29 (01) : 121 - 126
  • [8] PERIODIC SOLUTIONS TO DUFFING TYPE p-LAPLACIAN EQUATION WITH SEVERAL p-LAPLACIAN OPERATORS
    Zongfu Zhou
    Li Zeng
    Baorui Jia
    Jianzhong Xu
    [J]. Annals of Differential Equations., 2013, 29 (01) - 126
  • [9] On the eigenvalues of the p-Laplacian with varying p
    Huang, YX
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (11) : 3347 - 3354
  • [10] Existence problems for the p-Laplacian
    Edward, Julian
    Hudson, Steve
    Leckband, Mark
    [J]. FORUM MATHEMATICUM, 2015, 27 (02) : 1203 - 1225