Further considerations on the high-cycle fatigue of micron-scale polycrystalline silicon

被引:34
|
作者
Alsem, D. H. [2 ,3 ]
Muhlstein, C. L. [4 ]
Stach, E. A. [5 ]
Ritchie, R. O. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA
[4] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[5] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
关键词
MEMS; Silicon; Fatigue; Reaction-layer fatigue;
D O I
10.1016/j.scriptamat.2008.03.043
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bulk silicon is not susceptible to high-cycle fatigue but micron-scale silicon films are. Using polysilicon resonators to determine stress-lifetime fatigue behavior in several environments, oxide layers are found to show up to four-fold thickening after cycling, which is not seen after monotonic loading or after cycling in vacuo. We believe that the mechanism of thin-film silicon fatigue is "reaction-layer fatigue", involving cyclic stress-induced thickening of the oxide and moisture-assisted cracking within this layer. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
引用
收藏
页码:931 / 935
页数:5
相关论文
共 50 条
  • [41] LED pumped micron-scale all-silicon Raman amplifier
    Datta, Tanmoy
    Sen, Mrinal
    SUPERLATTICES AND MICROSTRUCTURES, 2017, 110 : 273 - 280
  • [42] Development of optical phased arrays in a micron-scale silicon photonics platform
    Muntaha, Sidra Tul
    Hokkanen, Ari
    Harjanne, Mikko
    Cherchi, Matteo
    Suopajarvi, Pekka
    Karvinen, Petri
    Pekkarinen, Markku
    Roussey, Matthieu
    Aalto, Timo
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XXVI, 2022, 12004
  • [43] Signal integrity of RZ data in micron-scale silicon ring resonators
    Lee, Benjamin G.
    Smar, Benjamin A.
    Bergman, Keren
    2006 IEEE LEOS ANNUAL MEETING CONFERENCE PROCEEDINGS, VOLS 1 AND 2, 2006, : 627 - +
  • [44] DEFINING MICRON-SCALE PLATINUM CONTACTS ON HYDROGENATED AMORPHOUS-SILICON
    LECOURS, A
    MEUNIER, M
    BISSON, M
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 1990, 8 (01): : 109 - 110
  • [45] Small-scale high-cycle fatigue testing by dynamic microcantilever bending
    Stefan Gabel
    Benoit Merle
    MRS Communications, 2020, 10 : 332 - 337
  • [46] Small-scale high-cycle fatigue testing by dynamic microcantilever bending
    Gabel, Stefan
    Merle, Benoit
    MRS COMMUNICATIONS, 2020, 10 (02) : 332 - 337
  • [47] HIGH-CYCLE FATIGUE BEHAVIOR OF POLYCRYSTALLINE NIAL-0.28 MOL-PERCENT-FE
    MATSUGI, K
    SMITH, TR
    STOLOFF, NS
    MATERIALS TRANSACTIONS JIM, 1994, 35 (08): : 551 - 557
  • [48] A probabilistic two-scale model for high-cycle fatigue life predictions
    Doudard, C
    Calloch, S
    Cugy, P
    Galtier, A
    Hild, F
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2005, 28 (03) : 279 - 288
  • [49] Effect of nitrogen plasma treatment on the hydrophilicity of polycrystalline diamond films with micron-scale grains
    Sun, Ran
    Wang, Xiaoping
    Wang, Lijun
    Chen, Jiaxing
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2021, 127 (04):
  • [50] High-cycle fatigue of micromachined single crystal silicon measured using a parallel fatigue test system
    Ikehara, Tsuyoshi
    Tsuchiya, Toshiyuki
    IEICE ELECTRONICS EXPRESS, 2007, 4 (09): : 288 - 293