Further considerations on the high-cycle fatigue of micron-scale polycrystalline silicon

被引:34
|
作者
Alsem, D. H. [2 ,3 ]
Muhlstein, C. L. [4 ]
Stach, E. A. [5 ]
Ritchie, R. O. [1 ,2 ]
机构
[1] Univ Calif Berkeley, Dept Mat Sci & Engn, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Div Mat Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Lawrence Berkeley Lab, Natl Ctr Electron Microscopy, Berkeley, CA 94720 USA
[4] Penn State Univ, Dept Mat Sci & Engn, University Pk, PA 16802 USA
[5] Purdue Univ, Sch Mat Engn, W Lafayette, IN 47907 USA
关键词
MEMS; Silicon; Fatigue; Reaction-layer fatigue;
D O I
10.1016/j.scriptamat.2008.03.043
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Bulk silicon is not susceptible to high-cycle fatigue but micron-scale silicon films are. Using polysilicon resonators to determine stress-lifetime fatigue behavior in several environments, oxide layers are found to show up to four-fold thickening after cycling, which is not seen after monotonic loading or after cycling in vacuo. We believe that the mechanism of thin-film silicon fatigue is "reaction-layer fatigue", involving cyclic stress-induced thickening of the oxide and moisture-assisted cracking within this layer. Published by Elsevier Ltd. on behalf of Acta Materialia Inc.
引用
收藏
页码:931 / 935
页数:5
相关论文
共 50 条
  • [31] Supporting quantum technologies with a micron-scale silicon photonics platform
    Cherchi, Matteo
    Bera, Arijit
    Kemppinen, Antti
    Nissila, Jaani
    Tappura, Kirsi
    Caputo, Marco
    Lehtimaki, Lauri
    Lehtinen, Janne
    Govenius, Joonas
    Prunnila, Mika
    Aalto, Timo
    INTEGRATED OPTICS: DEVICES, MATERIALS, AND TECHNOLOGIES XXVI, 2022, 12004
  • [32] Effect of Microscopic Structure on High-cycle Fatigue Damage in Polycrystalline Nano-copper
    Sumigawa, Takashi
    Matsumoto, Kenta
    Kitamura, Takayuki
    21ST EUROPEAN CONFERENCE ON FRACTURE, (ECF21), 2016, 2 : 1375 - 1382
  • [33] Hydrogen as an indicator of high-cycle fatigue
    Belyaev, Alexander K.
    Polyanskiy, Vladimir A.
    Yakovlev, Yuri A.
    DYNAMICAL ANALYSIS OF MULTIBODY SYSTEMS WITH DESIGN UNCERTAINTIES, 2015, 13 : 138 - 143
  • [34] High-cycle fatigue of ULTIMET® alloy
    Jiang, L
    Brooks, CR
    Liaw, PK
    Klarstrom, DL
    SUPERALLOYS 2000, 2000, : 583 - 591
  • [35] MICROMECHANICS OF AN EXTRUSION IN HIGH-CYCLE FATIGUE
    LIN, TH
    LIN, SR
    WU, XQ
    PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1989, 59 (06): : 1263 - 1276
  • [36] DAMAGE TO STRUCTURES BY HIGH-CYCLE FATIGUE
    NEMEC, J
    FATIGUE OF ENGINEERING MATERIALS AND STRUCTURES, 1982, 5 (03): : 205 - 214
  • [37] A shakedown model for high-cycle fatigue
    Cruz, I
    Zouain, N
    FATIGUE & FRACTURE OF ENGINEERING MATERIALS & STRUCTURES, 2003, 26 (02) : 123 - 135
  • [38] Aspects of the modeling of high-cycle fatigue
    Paluszynski, Blazej
    Boehlke, Thomas
    ADVANCES IN FRACTURE AND DAMAGE MECHANICS VI, 2007, 348-349 : 121 - +
  • [39] High-cycle fatigue plumbed at SwRI
    Aviat Week Space Technol (New York), 24 (88):
  • [40] Fatigue Reduction Factor in High-cycle Fatigue.
    Lukas, Petr
    Kunz, Ludvik
    Kovove Materialy, 1980, 18 (05): : 591 - 601