Anisotropy of the quantum-confined Stark effect in a single InAs quantum dot

被引:2
|
作者
Ohmori, M [1 ]
Torii, K [1 ]
Sakaki, H [1 ]
机构
[1] Univ Tokyo, Inst Ind Sci, Meguro Ku, 4-6-1 Komaba, Tokyo 1538505, Japan
关键词
D O I
10.1002/pssc.200564171
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The quantum-confined Stark effect in a single InAs quantum dot has been studied in a novel device geometry, where both in-plane and perpendicular electric fields, E-parallel to and E-perpendicular to, can be applied. The shift in the photoluminescence energy from the exciton ground state of the dot has been studied as functions of applied bias voltages, V-parallel to and V-perpendicular to, and found to be quite anisotropic. Possible origins of the observed anisotropy are discussed. (c) 2006 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
引用
收藏
页码:512 / +
页数:2
相关论文
共 50 条
  • [31] Experimental and theoretical study of the quantum-confined Stark effect in a single InGaN/GaN quantum dot under applied vertical electric field
    Jarjour, Anas F.
    Oliver, Rachel A.
    Tahraoui, Abbes
    Kappers, Menno J.
    Taylor, Robert A.
    Humphreys, Colin J.
    SUPERLATTICES AND MICROSTRUCTURES, 2008, 43 (5-6) : 431 - 435
  • [32] Spectroscopy of persistent hole burning in the quantum dot-matrix system: Quantum-confined stark effect and electroabsorption
    Kruchinin, S. Yu.
    Fedorov, A. V.
    PHYSICS OF THE SOLID STATE, 2007, 49 (05) : 968 - 975
  • [33] Quantum-confined Stark effect and built-in dipole moment in self-assembled InAs/GaAs quantum dots
    Jin, P
    Li, CM
    Zhang, ZY
    Liu, FQ
    Chen, YH
    Ye, XL
    Xu, B
    Wang, ZG
    APPLIED PHYSICS LETTERS, 2004, 85 (14) : 2791 - 2793
  • [34] The role of surface charges in the blinking mechanisms and quantum-confined Stark effect of single colloidal quantum dots
    Li, Jialu
    Wang, Dengfeng
    Zhang, Guofeng
    Yang, Changgang
    Guo, Wenli
    Han, Xue
    Bai, Xiuqing
    Chen, Ruiyun
    Qin, Chengbing
    Hu, Jianyong
    Xiao, Liantuan
    Jia, Suotang
    NANO RESEARCH, 2022, 15 (08) : 7655 - 7661
  • [35] The role of surface charges in the blinking mechanisms and quantum-confined Stark effect of single colloidal quantum dots
    Jialu Li
    Dengfeng Wang
    Guofeng Zhang
    Changgang Yang
    Wenli Guo
    Xue Han
    Xiuqing Bai
    Ruiyun Chen
    Chengbing Qin
    Jianyong Hu
    Liantuan Xiao
    Suotang Jia
    Nano Research, 2022, 15 (8) : 7655 - 7661
  • [36] Quantum-confined Stark effect in strained GaInN quantum wells on sapphire (0001)
    Takeuchi, T
    Sota, S
    Sakai, H
    Amanoa, H
    Akasaki, I
    Kaneko, Y
    Nakagawa, S
    Yamaoka, Y
    Yamada, N
    JOURNAL OF CRYSTAL GROWTH, 1998, 189 : 616 - 620
  • [37] Evidence for quantum-confined Stark effect in GaN/AlN quantum dots in nanowires
    Renard, J.
    Songmuang, R.
    Tourbot, G.
    Bougerol, C.
    Daudin, B.
    Gayral, B.
    PHYSICAL REVIEW B, 2009, 80 (12):
  • [38] OPTICAL QUANTUM-CONFINED STARK-EFFECT IN GAAS QUANTUM-WELLS
    FROHLICH, D
    WILLE, R
    SCHLAPP, W
    WEIMANN, G
    PHYSICAL REVIEW LETTERS, 1987, 59 (15) : 1748 - 1751
  • [39] Enhancement of the quantum-confined stark effect utilizing asymmetric quantum well structures
    Gug, RK
    Hagston, WE
    APPLIED PHYSICS LETTERS, 1999, 74 (02) : 254 - 256
  • [40] Characterizing the Quantum-Confined Stark Effect in Semiconductor Quantum Dots and Nanorods for Single-Molecule Electrophysiology
    Kuo, Yung
    Li, Jack
    Michalet, Xavier
    Chizhik, Alexey
    Meir, Noga
    Bar-Elli, Omri
    Chan, Emory
    Oron, Dan
    Enderlein, Joerg
    Weiss, Shimon
    ACS PHOTONICS, 2018, 5 (12): : 4788 - 4800