Bifurcations of planar Hamiltonian systems with impulsive perturbation

被引:1
|
作者
Hu, Zhaoping [1 ,4 ]
Han, Maoan [2 ]
Romanovski, Valery G. [3 ,4 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[3] Univ Maribor, Fac Nat Sci & Math, SI-2000 Maribor, Slovenia
[4] Univ Maribor, Ctr Appl Math & Theoret Phys, SI-2000 Maribor, Slovenia
基金
中国国家自然科学基金;
关键词
Hamiltonian system; Impulsive differential equation; Periodic solution; Bifurcation; DIFFERENTIAL-EQUATIONS; PERIODIC-SOLUTIONS; OSCILLATORS; ORBITS;
D O I
10.1016/j.amc.2013.01.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by means of the Melnikov functions we consider bifurcations of harmonic or subharmonic solutions from a periodic solution of a planar Hamiltonian system under impulsive perturbation. We give some sufficient conditions under which a harmonic or subharmonic solution exists. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:6733 / 6742
页数:10
相关论文
共 50 条
  • [21] Bifurcations and dynamical evolution of eigenvalues of Hamiltonian systems
    Hsiao, FY
    Scheeres, DJ
    PHYSICA D-NONLINEAR PHENOMENA, 2006, 213 (01) : 66 - 75
  • [22] HOPF BIFURCATIONS FOR NEAR-HAMILTONIAN SYSTEMS
    Han, Maoan
    Yang, Junmin
    Yu, Pei
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (12): : 4117 - 4130
  • [23] Control of integrable Hamiltonian systems and degenerate bifurcations
    Kulp, CW
    Tracy, ER
    PHYSICAL REVIEW E, 2004, 70 (01)
  • [24] Degenerate bifurcations of resonant tori in Hamiltonian systems
    Voyatzis, G
    Ichtiaroglou, S
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1999, 9 (05): : 849 - 863
  • [25] Topology and bifurcations in Hamiltonian coupled cell systems
    Chan, B. S.
    Buono, P. L.
    Palacios, A.
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2017, 32 (01): : 23 - 45
  • [26] Bifurcations of normally parabolic tori in Hamiltonian systems
    Broer, HW
    Hanssmann, H
    You, JG
    NONLINEARITY, 2005, 18 (04) : 1735 - 1769
  • [27] Bifurcations from relative equilibria of Hamiltonian systems
    Roberts, RM
    Dias, MERD
    NONLINEARITY, 1997, 10 (06) : 1719 - 1738
  • [28] INVERSE FEIGENBAUM BIFURCATIONS IN HAMILTONIAN-SYSTEMS
    CONTOPOULOS, G
    LETTERE AL NUOVO CIMENTO, 1983, 37 (04): : 149 - 155
  • [29] The symmetry groups of bifurcations of integrable Hamiltonian systems
    Orlova, E. I.
    SBORNIK MATHEMATICS, 2014, 205 (11) : 1668 - 1682
  • [30] Networks of planar Hamiltonian systems
    Tourigny, David S.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2017, 53 : 263 - 277