Bifurcations of planar Hamiltonian systems with impulsive perturbation

被引:1
|
作者
Hu, Zhaoping [1 ,4 ]
Han, Maoan [2 ]
Romanovski, Valery G. [3 ,4 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Normal Univ, Dept Math, Shanghai 200234, Peoples R China
[3] Univ Maribor, Fac Nat Sci & Math, SI-2000 Maribor, Slovenia
[4] Univ Maribor, Ctr Appl Math & Theoret Phys, SI-2000 Maribor, Slovenia
基金
中国国家自然科学基金;
关键词
Hamiltonian system; Impulsive differential equation; Periodic solution; Bifurcation; DIFFERENTIAL-EQUATIONS; PERIODIC-SOLUTIONS; OSCILLATORS; ORBITS;
D O I
10.1016/j.amc.2013.01.006
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by means of the Melnikov functions we consider bifurcations of harmonic or subharmonic solutions from a periodic solution of a planar Hamiltonian system under impulsive perturbation. We give some sufficient conditions under which a harmonic or subharmonic solution exists. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:6733 / 6742
页数:10
相关论文
共 50 条
  • [41] Nonsmooth bifurcations of equilibria in planar continuous systems
    Biemond, J. J. Benjamin
    van de Wouw, Nathan
    Nijmeijer, Henk
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2010, 4 (03) : 451 - 474
  • [42] Degenerate Hopf bifurcations in discontinuous planar systems
    Coll, B
    Gasull, A
    Prohens, R
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 253 (02) : 671 - 690
  • [43] Linearizability of planar polynomial Hamiltonian systems
    Arcet, Barbara
    Gine, Jaume
    Romanovski, Valery G.
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2022, 63
  • [44] Impulsive control of bifurcations
    Liu, Feng
    Guan, Zhi-Hong
    Wang, Hua O.
    Li, Yuqing
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2009, 79 (07) : 2180 - 2191
  • [45] PERTURBATION OF HAMILTONIAN-SYSTEMS WITH KEPLERIAN POTENTIALS
    AMBROSETTI, A
    ZELATI, VC
    MATHEMATISCHE ZEITSCHRIFT, 1989, 201 (02) : 227 - 242
  • [46] Boundary value problems for nonlinear impulsive Hamiltonian systems
    Guseinov, Gusein Sh.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 259 : 780 - 789
  • [47] On the impulsive boundary value problems for nonlinear Hamiltonian systems
    Guseinov, Gusein Sh.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (15) : 4496 - 4503
  • [48] Two solutions to superlinear Hamiltonian systems with impulsive effects
    Liu, Jian
    Yu, Wenguang
    APPLIED MATHEMATICS LETTERS, 2020, 102
  • [49] Stability criteria for linear periodic impulsive Hamiltonian systems
    Guseinov, G. Sh.
    Zafer, A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 335 (02) : 1195 - 1206
  • [50] Multiple solutions to damped Hamiltonian systems with impulsive effects
    Liu, Jian
    Zhao, Zengqin
    Zhang, Tongqian
    APPLIED MATHEMATICS LETTERS, 2019, 91 : 173 - 180