Sequential Monte Carlo methods for mixtures with normalized random measures with independent increments priors

被引:7
|
作者
Griffin, J. E. [1 ]
机构
[1] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury, Kent, England
关键词
Bayesian nonparametrics; Dirichlet process; Normalized generalized gamma process; Nonparametric stochastic volatility; Slice sampling; Particle Gibbs sampling; BAYESIAN-INFERENCE; DENSITY-ESTIMATION; SAMPLING METHODS; PARTICLE FILTER; MODEL; DISTRIBUTIONS; VOLATILITY; GIBBS;
D O I
10.1007/s11222-015-9612-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Normalized random measures with independent increments are a general, tractable class of nonparametric prior. This paper describes sequential Monte Carlo methods for both conjugate and non-conjugate nonparametric mixture models with these priors. A simulation study is used to compare the efficiency of the different algorithms for density estimation and comparisons made with Markov chain Monte Carlo methods. The SMC methods are further illustrated by applications to dynamically fitting a nonparametric stochastic volatility model and to estimation of the marginal likelihood in a goodness-of-fit testing example.
引用
收藏
页码:131 / 145
页数:15
相关论文
共 50 条
  • [41] Reconstruction of random media using Monte Carlo methods
    Manwart, C.
    Hilfer, R.
    Physical Review E. Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1999, 59 (5 pt B):
  • [42] Random cubatures and quasi-Monte Carlo methods
    Antonov, Anton A.
    Ermakov, Sergej M.
    MONTE CARLO METHODS AND APPLICATIONS, 2015, 21 (03): : 179 - 187
  • [43] New sequential Monte Carlo methods for nonlinear dynamic systems
    Guo, D
    Wang, XD
    Chen, R
    STATISTICS AND COMPUTING, 2005, 15 (02) : 135 - 147
  • [44] SEQUENTIAL MONTE CARLO METHODS FOR ESTIMATING DYNAMIC MICROECONOMIC MODELS
    Blevins, Jason R.
    JOURNAL OF APPLIED ECONOMETRICS, 2016, 31 (05) : 773 - 804
  • [45] Distributed tracking with sequential Monte Carlo methods for manoeuvrable sensors
    Jaward, M. H.
    Bull, D.
    Canagarajah, N.
    NSSPW: NONLINEAR STATISTICAL SIGNAL PROCESSING WORKSHOP: CLASSICAL, UNSCENTED AND PARTICLE FILTERING METHODS, 2006, : 113 - 116
  • [46] Sequential Monte Carlo methods for permutation tests on truncated data
    Chen, Yuguo
    Liu, Jun S.
    STATISTICA SINICA, 2007, 17 (03) : 857 - 872
  • [47] Sequential Monte Carlo methods to train neural network models
    de Freitas, JFG
    Niranjan, M
    Gee, AH
    Doucet, A
    NEURAL COMPUTATION, 2000, 12 (04) : 955 - 993
  • [48] Satellite Image Denoising using Sequential Monte Carlo Methods
    Solarte, Kelvin
    Sanchez, Luis
    Ordonez, Joan
    INGENIERIA UC, 2014, 21 (02): : 35 - 42
  • [50] Linear multistep methods, particle filtering and sequential Monte Carlo
    Arnold, Andrea
    Calvetti, Daniela
    Somersalo, Erkki
    INVERSE PROBLEMS, 2013, 29 (08)