Sequential Monte Carlo methods for mixtures with normalized random measures with independent increments priors

被引:7
|
作者
Griffin, J. E. [1 ]
机构
[1] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury, Kent, England
关键词
Bayesian nonparametrics; Dirichlet process; Normalized generalized gamma process; Nonparametric stochastic volatility; Slice sampling; Particle Gibbs sampling; BAYESIAN-INFERENCE; DENSITY-ESTIMATION; SAMPLING METHODS; PARTICLE FILTER; MODEL; DISTRIBUTIONS; VOLATILITY; GIBBS;
D O I
10.1007/s11222-015-9612-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Normalized random measures with independent increments are a general, tractable class of nonparametric prior. This paper describes sequential Monte Carlo methods for both conjugate and non-conjugate nonparametric mixture models with these priors. A simulation study is used to compare the efficiency of the different algorithms for density estimation and comparisons made with Markov chain Monte Carlo methods. The SMC methods are further illustrated by applications to dynamically fitting a nonparametric stochastic volatility model and to estimation of the marginal likelihood in a goodness-of-fit testing example.
引用
收藏
页码:131 / 145
页数:15
相关论文
共 50 条
  • [21] Sequential Monte Carlo Methods for Option Pricing
    Jasra, Ajay
    Del Moral, Pierre
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2011, 29 (02) : 292 - 316
  • [22] Sequential Monte Carlo methods for dynamic systems
    Liu, JS
    Chen, R
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1998, 93 (443) : 1032 - 1044
  • [23] Sequential Monte Carlo Methods for System Identification
    Schon, Thomas B.
    Lindsten, Fredrik
    Dahlin, Johan
    Wagberg, Johan
    Naesseth, Christian A.
    Svensson, Andreas
    Dai, Liang
    IFAC PAPERSONLINE, 2015, 48 (28): : 775 - 786
  • [24] MONTE CARLO METHODS FOR GENERATION OF RANDOM GRAPHS
    Waclaw, B.
    Bogacz, L.
    Burda, Z.
    Janke, W.
    PATH INTEGRALS: NEW TRENDS AND PERSPECTIVES, PROCEEDINGS, 2008, : 342 - +
  • [25] Random walks on graphs and Monte Carlo methods
    Cheng, Wen-Ju
    Cox, Jim
    Whitlock, Paula
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2017, 135 : 86 - 94
  • [26] Multilevel Monte Carlo FEM for elliptic PDEs with Besov random tree priors
    Schwab, Christoph
    Stein, Andreas
    STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS, 2024, 12 (03): : 1574 - 1627
  • [27] On sequential Monte Carlo sampling methods for Bayesian filtering
    Arnaud Doucet
    Simon Godsill
    Christophe Andrieu
    Statistics and Computing, 2000, 10 : 197 - 208
  • [28] Inverse kinematics using sequential Monte Carlo methods
    Courty, Nicolas
    Arnaud, Elise
    ARTICULATED MOTION AND DEFORMABLE OBJECTS, PROCEEDINGS, 2008, 5098 : 1 - +
  • [29] On adaptive resampling strategies for sequential Monte Carlo methods
    Del Moral, Pierre
    Doucet, Arnaud
    Jasra, Ajay
    BERNOULLI, 2012, 18 (01) : 252 - 278
  • [30] ON THE STABILITY OF SEQUENTIAL MONTE CARLO METHODS IN HIGH DIMENSIONS
    Beskos, Alexandros
    Crisan, Dan
    Jasra, Ajay
    ANNALS OF APPLIED PROBABILITY, 2014, 24 (04): : 1396 - 1445