Exploring More-Coherent Quantum Annealing

被引:0
|
作者
Novikov, Sergey [1 ]
Hinkey, Robert [1 ]
Disseler, Steven [1 ]
Basham, James I. [1 ]
Albash, Tameem [2 ,3 ,4 ]
Risinger, Andrew [1 ]
Ferguson, David [1 ]
Lidar, Daniel A. [3 ,4 ,5 ,6 ]
Zick, Kenneth M. [1 ]
机构
[1] Northrop Grumman Corp, Linthicum, MD 21090 USA
[2] Univ Southern Calif, Informat Sci Inst, Marina Del Rey, CA 90292 USA
[3] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[4] Univ Southern Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[5] Univ Southern Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[6] Univ Southern Calif, Dept Chem, Los Angeles, CA 90089 USA
关键词
quantum annealing; superconducting; qubit; coherence; quantum computing;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the quest to reboot computing, quantum annealing (QA) is an interesting candidate for a new capability. While it has not demonstrated an advantage over classical computing on a real-world application, many important regions of the QA design space have yet to be explored. In IARPA's Quantum Enhanced Optimization (QEO) program, we have opened some new lines of inquiry to get to the heart of QA, and are designing testbed superconducting circuits and conducting key experiments. In this paper, we discuss recent experimental progress related to one of the key design dimensions: qubit coherence. Using MIT Lincoln Laboratory's qubit fabrication process and extending recent progress in flux qubits, we are implementing and measuring QA-capable flux qubits. Achieving high coherence in a QA context presents significant new engineering challenges. We report on techniques and preliminary measurement results addressing two of the challenges: crosstalk calibration and qubit readout. This groundwork enables exploration of other promising features and provides a path to understanding the physics and the viability of quantum annealing as a computing resource.
引用
收藏
页码:79 / 85
页数:7
相关论文
共 50 条
  • [41] Hyperconjugation: A More Coherent Approach
    Mullins, Joseph J.
    JOURNAL OF CHEMICAL EDUCATION, 2012, 89 (07) : 834 - 836
  • [42] COHERENT ANNEALING TWIN BOUNDARIES AS VACANCY SINKS
    SEGALL, RL
    ACTA METALLURGICA, 1964, 12 (01): : 117 - &
  • [43] The intricate path of energy conservation in quantum mechanics: exploring coherent population return and laser–matter interaction
    Álvaro Peralta Conde
    The European Physical Journal Plus, 139
  • [44] Capacities of quantum channels and quantum coherent information
    Westmoreland, M
    Schumacher, B
    QUANTUM COMPUTING AND QUANTUM COMMUNICATIONS, 1999, 1509 : 285 - 295
  • [45] Quantum coherent effects in photosynthesis and their quantum simulation
    Zhang Na-Na
    He Wan-Ting
    Sun Zong-Hao
    Deng Ru-Qiong
    Wang Yang-Yang
    Ai Qing
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2022, 52 (07)
  • [46] Exploring more with less
    Dunnahoe, Tayvis
    OIL & GAS JOURNAL, 2014, 112 (6C) : 16 - 16
  • [47] Quantum annealing: The fastest route to quantum computation?
    Suzuki, Sei
    Das, Arnab
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2015, 224 (01): : 1 - 4
  • [48] Colloquium: Quantum annealing and analog quantum computation
    Das, Amab
    Chakrabarti, Bikas K.
    REVIEWS OF MODERN PHYSICS, 2008, 80 (03) : 1061 - 1081
  • [49] Quantum annealing: The fastest route to quantum computation?
    C.R. Laumann
    R. Moessner
    A. Scardicchio
    S.L. Sondhi
    The European Physical Journal Special Topics, 2015, 224 : 75 - 88
  • [50] Prospects for quantum enhancement with diabatic quantum annealing
    E. J. Crosson
    D. A. Lidar
    Nature Reviews Physics, 2021, 3 : 466 - 489