Exploring More-Coherent Quantum Annealing

被引:0
|
作者
Novikov, Sergey [1 ]
Hinkey, Robert [1 ]
Disseler, Steven [1 ]
Basham, James I. [1 ]
Albash, Tameem [2 ,3 ,4 ]
Risinger, Andrew [1 ]
Ferguson, David [1 ]
Lidar, Daniel A. [3 ,4 ,5 ,6 ]
Zick, Kenneth M. [1 ]
机构
[1] Northrop Grumman Corp, Linthicum, MD 21090 USA
[2] Univ Southern Calif, Informat Sci Inst, Marina Del Rey, CA 90292 USA
[3] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[4] Univ Southern Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[5] Univ Southern Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[6] Univ Southern Calif, Dept Chem, Los Angeles, CA 90089 USA
关键词
quantum annealing; superconducting; qubit; coherence; quantum computing;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the quest to reboot computing, quantum annealing (QA) is an interesting candidate for a new capability. While it has not demonstrated an advantage over classical computing on a real-world application, many important regions of the QA design space have yet to be explored. In IARPA's Quantum Enhanced Optimization (QEO) program, we have opened some new lines of inquiry to get to the heart of QA, and are designing testbed superconducting circuits and conducting key experiments. In this paper, we discuss recent experimental progress related to one of the key design dimensions: qubit coherence. Using MIT Lincoln Laboratory's qubit fabrication process and extending recent progress in flux qubits, we are implementing and measuring QA-capable flux qubits. Achieving high coherence in a QA context presents significant new engineering challenges. We report on techniques and preliminary measurement results addressing two of the challenges: crosstalk calibration and qubit readout. This groundwork enables exploration of other promising features and provides a path to understanding the physics and the viability of quantum annealing as a computing resource.
引用
收藏
页码:79 / 85
页数:7
相关论文
共 50 条
  • [21] Quantum error mitigation in quantum annealing
    Raymond, Jack
    Amin, Mohammad H.
    King, Andrew D.
    Harris, Richard
    Bernoudy, William
    Berkley, Andrew J.
    Boothby, Kelly
    Smirnov, Anatoly
    Altomare, Fabio
    Babcock, Michael
    Baron, Catia
    Connor, Jake
    Dehn, Martin H.
    Enderud, Colin
    Hoskinson, Emile
    Huang, Shuiyuan
    Johnson, Mark W.
    Ladizinsky, Eric
    Lanting, Trevor
    Macdonald, Allison J. R.
    Marsden, Gaelen
    Molavi, Reza
    Oh, Travis
    Poulin-Lamarre, Gabriel
    Ramp, Hugh
    Rich, Chris
    Clavera, Berta Trullas
    Tsai, Nicholas
    Volkmann, Mark
    Whittaker, Jed D.
    Yao, Jason
    Heinsdorf, Niclas
    Kaushal, Nitin
    Nocera, Alberto
    Franz, Marcel
    Dziarmaga, Jacek
    NPJ QUANTUM INFORMATION, 2025, 11 (01)
  • [22] QUANTUM COHERENT OPERATORS - A GENERALIZATION OF COHERENT STATES
    LIEB, EH
    SOLOVEJ, JP
    LETTERS IN MATHEMATICAL PHYSICS, 1991, 22 (02) : 145 - 154
  • [23] Towards a more coherent regional environment agenda in the Middle East: Exploring the role of comparative risk assessment
    Tal, A
    COMPARATIVE RISK ASSESSMENT AND ENVIRONMENTAL DECISION MAKING, 2004, 38 : 125 - 131
  • [24] Quantum coherent versus classical coherent light
    D. Dragoman
    M. Dragoman
    Optical and Quantum Electronics, 2001, 33 : 239 - 252
  • [25] Quantum coherent versus classical coherent light
    Dragoman, D
    Dragoman, M
    OPTICAL AND QUANTUM ELECTRONICS, 2001, 33 (03) : 239 - 252
  • [26] What Is the Optimal Annealing Schedule in Quantum Annealing
    Galindo, Oscar
    Kreinovich, Vladik
    2020 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2020, : 963 - 967
  • [27] On coherent quantum information
    Tuyls, P
    2003 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY - PROCEEDINGS, 2003, : 402 - 402
  • [28] COHERENT QUANTUM LOGIC
    FINKELSTEIN, D
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1987, 26 (02) : 109 - 129
  • [29] Coherent quantum feedback
    Lloyd, S
    PHYSICAL REVIEW A, 2000, 62 (02): : 12
  • [30] Reverse Quantum Annealing Assisted by Forward Annealing
    Jattana, Manpreet Singh
    QUANTUM REPORTS, 2024, 6 (03): : 452 - 464