Exploring More-Coherent Quantum Annealing

被引:0
|
作者
Novikov, Sergey [1 ]
Hinkey, Robert [1 ]
Disseler, Steven [1 ]
Basham, James I. [1 ]
Albash, Tameem [2 ,3 ,4 ]
Risinger, Andrew [1 ]
Ferguson, David [1 ]
Lidar, Daniel A. [3 ,4 ,5 ,6 ]
Zick, Kenneth M. [1 ]
机构
[1] Northrop Grumman Corp, Linthicum, MD 21090 USA
[2] Univ Southern Calif, Informat Sci Inst, Marina Del Rey, CA 90292 USA
[3] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[4] Univ Southern Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[5] Univ Southern Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[6] Univ Southern Calif, Dept Chem, Los Angeles, CA 90089 USA
关键词
quantum annealing; superconducting; qubit; coherence; quantum computing;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the quest to reboot computing, quantum annealing (QA) is an interesting candidate for a new capability. While it has not demonstrated an advantage over classical computing on a real-world application, many important regions of the QA design space have yet to be explored. In IARPA's Quantum Enhanced Optimization (QEO) program, we have opened some new lines of inquiry to get to the heart of QA, and are designing testbed superconducting circuits and conducting key experiments. In this paper, we discuss recent experimental progress related to one of the key design dimensions: qubit coherence. Using MIT Lincoln Laboratory's qubit fabrication process and extending recent progress in flux qubits, we are implementing and measuring QA-capable flux qubits. Achieving high coherence in a QA context presents significant new engineering challenges. We report on techniques and preliminary measurement results addressing two of the challenges: crosstalk calibration and qubit readout. This groundwork enables exploration of other promising features and provides a path to understanding the physics and the viability of quantum annealing as a computing resource.
引用
收藏
页码:79 / 85
页数:7
相关论文
共 50 条
  • [31] COHERENT QUANTUM TOMOGRAPHY
    Ilmavirta, Joonas
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2016, 48 (05) : 3039 - 3064
  • [32] Pulsed Quantum Annealing
    Karanikolas, Vasilios
    Kawabata, Shiro
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2020, 89 (09)
  • [33] LEARNING QUANTUM ANNEALING
    Behrman, E. C.
    Steck, J. E.
    Moustafa, M. A.
    QUANTUM INFORMATION & COMPUTATION, 2017, 17 (5-6) : 469 - 487
  • [34] Quantum annealing: an overview
    Rajak, Atanu
    Suzuki, Sei
    Dutta, Amit
    Chakrabarti, Bikas. K. K.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 381 (2241):
  • [35] Quantum ferromagnetic annealing
    Suzuki, Set
    Nishimori, Hidetoshi
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 40 (02): : 367 - 370
  • [36] Dissipative Quantum Annealing
    de Falco, D.
    Pertoso, E.
    Tamascelli, D.
    QUANTUM PROBABILITY AND INFINITE DIMENSIONAL ANALYSIS, 2010, 25 : 288 - 301
  • [37] Parallel quantum annealing
    Pelofske, Elijah
    Hahn, Georg
    Djidjev, Hristo N.
    SCIENTIFIC REPORTS, 2022, 12 (01)
  • [38] AN INTRODUCTION TO QUANTUM ANNEALING
    de Falco, Diego
    Tamascelli, Dario
    RAIRO-THEORETICAL INFORMATICS AND APPLICATIONS, 2011, 45 (01): : 99 - 116
  • [39] Parallel quantum annealing
    Elijah Pelofske
    Georg Hahn
    Hristo N. Djidjev
    Scientific Reports, 12
  • [40] More light on coherent backscattering
    Holcomb, DF
    AMERICAN JOURNAL OF PHYSICS, 1996, 64 (02) : 109 - 109