Exploring More-Coherent Quantum Annealing

被引:0
|
作者
Novikov, Sergey [1 ]
Hinkey, Robert [1 ]
Disseler, Steven [1 ]
Basham, James I. [1 ]
Albash, Tameem [2 ,3 ,4 ]
Risinger, Andrew [1 ]
Ferguson, David [1 ]
Lidar, Daniel A. [3 ,4 ,5 ,6 ]
Zick, Kenneth M. [1 ]
机构
[1] Northrop Grumman Corp, Linthicum, MD 21090 USA
[2] Univ Southern Calif, Informat Sci Inst, Marina Del Rey, CA 90292 USA
[3] Univ Southern Calif, Dept Phys & Astron, Los Angeles, CA 90089 USA
[4] Univ Southern Calif, Ctr Quantum Informat Sci & Technol, Los Angeles, CA 90089 USA
[5] Univ Southern Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[6] Univ Southern Calif, Dept Chem, Los Angeles, CA 90089 USA
关键词
quantum annealing; superconducting; qubit; coherence; quantum computing;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In the quest to reboot computing, quantum annealing (QA) is an interesting candidate for a new capability. While it has not demonstrated an advantage over classical computing on a real-world application, many important regions of the QA design space have yet to be explored. In IARPA's Quantum Enhanced Optimization (QEO) program, we have opened some new lines of inquiry to get to the heart of QA, and are designing testbed superconducting circuits and conducting key experiments. In this paper, we discuss recent experimental progress related to one of the key design dimensions: qubit coherence. Using MIT Lincoln Laboratory's qubit fabrication process and extending recent progress in flux qubits, we are implementing and measuring QA-capable flux qubits. Achieving high coherence in a QA context presents significant new engineering challenges. We report on techniques and preliminary measurement results addressing two of the challenges: crosstalk calibration and qubit readout. This groundwork enables exploration of other promising features and provides a path to understanding the physics and the viability of quantum annealing as a computing resource.
引用
收藏
页码:79 / 85
页数:7
相关论文
共 50 条
  • [1] Coherent Coupled Qubits for Quantum Annealing
    Weber, Steven J.
    Samach, Gabriel O.
    Hover, David
    Gustavsson, Simon
    Kim, David K.
    Melville, Alexander
    Rosenberg, Danna
    Sears, Adam P.
    Yan, Fei
    Yoder, Jonilyn L.
    Oliver, William D.
    Kerman, Andrew J.
    PHYSICAL REVIEW APPLIED, 2017, 8 (01):
  • [2] More coherent quantum computing
    Anon
    Scientific American, 2002, 287 (02)
  • [3] Exploring Quantum Annealing Architectures: A Spin Glass Perspective
    Jauma, Gabriel
    Garcia-Ripoll, Juan Jose
    Pino, Manuel
    ADVANCED QUANTUM TECHNOLOGIES, 2024, 7 (04)
  • [4] Evidence for quantum annealing with more than one hundred qubits
    Boixo, Sergio
    Ronnow, Troels F.
    Isakov, Sergei V.
    Wang, Zhihui
    Wecker, David
    Lidar, Daniel A.
    Martinis, John M.
    Troyer, Matthias
    NATURE PHYSICS, 2014, 10 (03) : 218 - 224
  • [5] Reducing Binary Quadratic Forms for More Scalable Quantum Annealing
    Hahn, Georg
    Djidjev, Hristo
    2017 IEEE INTERNATIONAL CONFERENCE ON REBOOTING COMPUTING (ICRC), 2017, : 138 - 145
  • [6] Evidence for quantum annealing with more than one hundred qubits
    Boixo S.
    Rønnow T.F.
    Isakov S.V.
    Wang Z.
    Wecker D.
    Lidar D.A.
    Martinis J.M.
    Troyer M.
    Nature Physics, 2014, 10 (3) : 218 - 224
  • [7] Reduction of energy-gap scaling by coherent catalysis in models of quantum annealing
    Koh, Yang Wei
    Nishimori, Hidetoshi
    PHYSICAL REVIEW A, 2020, 101 (05)
  • [8] Coherent quantum annealing in a programmable 2,000 qubit Ising chain
    King, Andrew D.
    Suzuki, Sei
    Raymond, Jack
    Zucca, Alex
    Lanting, Trevor
    Altomare, Fabio
    Berkley, Andrew J.
    Ejtemaee, Sara
    Hoskinson, Emile
    Huang, Shuiyuan
    Ladizinsky, Eric
    MacDonald, Allison J. R.
    Marsden, Gaelen
    Oh, Travis
    Poulin-Lamarre, Gabriel
    Reis, Mauricio
    Rich, Chris
    Sato, Yuki
    Whittaker, Jed D.
    Yao, Jason
    Harris, Richard
    Lidar, Daniel A.
    Nishimori, Hidetoshi
    Amin, Mohammad H.
    NATURE PHYSICS, 2022, 18 (11) : 1324 - +
  • [9] Coherent quantum annealing in a programmable 2,000 qubit Ising chain
    Andrew D. King
    Sei Suzuki
    Jack Raymond
    Alex Zucca
    Trevor Lanting
    Fabio Altomare
    Andrew J. Berkley
    Sara Ejtemaee
    Emile Hoskinson
    Shuiyuan Huang
    Eric Ladizinsky
    Allison J. R. MacDonald
    Gaelen Marsden
    Travis Oh
    Gabriel Poulin-Lamarre
    Mauricio Reis
    Chris Rich
    Yuki Sato
    Jed D. Whittaker
    Jason Yao
    Richard Harris
    Daniel A. Lidar
    Hidetoshi Nishimori
    Mohammad H. Amin
    Nature Physics, 2022, 18 : 1324 - 1328
  • [10] Exploring superadditivity of coherent information of noisy quantum channels through genetic algorithms
    Sidhardh, Govind Lal
    Alimuddin, Mir
    Banik, Manik
    PHYSICAL REVIEW A, 2022, 106 (01)