Forecasting cryptocurrency prices using Recurrent Neural Network and Long Short-term Memory

被引:17
|
作者
Nasirtafreshi, I. [1 ]
机构
[1] Islamic Azad Univ, Fac Engn, Dept Artificial Intelligence, Ghods Branch, Tehran, Iran
关键词
Cryptocurrency; Recurrent Neural Network; Long Short-term Memory; Deep learning; Forecasting prices; Time series data;
D O I
10.1016/j.datak.2022.102009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rapid development of cryptocurrencies over the past decade is one of the most controversial and ambiguous innovations in the modern global economy. Numerous and unpredictable fluctuations in cryptocurrencies rates, as well as the lack of intelligent and proper management of transactions of this type of currency in most developing countries and users of this type of currency, has led to increased risk and distrust of these roses in investors. Capitalists and investors prefer to invest in programs which have the least risk, the most profit and the least time to achieve the main profit. Therefore, the issue of developing appropriate methods and models for predicting the price of cryptographic products is essential both for the scientific community and for financial analysts, investors and traders. In this research, a new deep learning model is used to predict the price of cryptocurrencies. The proposed model uses a Recurrent Neural Networks (RNN) algorithm based on Long Short-Term Memory (LSTM) method to predict the price. In the presented results of the simulation of the proposed method, factors such as the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), R-Squared (R2) were compared with other similar methods. Finally, the superiority of the proposed method over other methods was proven.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Applying Long Short-Term Memory Recurrent Neural Network for Intrusion Detection
    Althubiti, Sara
    Nick, William
    Mason, Janelle
    Yuan, Xiaohong
    Esterline, Albert
    IEEE SOUTHEASTCON 2018, 2018,
  • [32] Long Short-Term Memory Recurrent Neural Network Architectures for Melody Generation
    Mishra, Abhinav
    Tripathi, Kshitij
    Gupta, Lakshay
    Singh, Krishna Pratap
    SOFT COMPUTING FOR PROBLEM SOLVING, 2019, 817 : 41 - 55
  • [33] Long Short-Term Memory Recurrent Neural Network for Automatic Speech Recognition
    Oruh, Jane
    Viriri, Serestina
    Adegun, Adekanmi
    IEEE ACCESS, 2022, 10 : 30069 - 30079
  • [34] Short-term load forecasting using Multiscale BiLinear Recurrent Neural Network
    Park, Dong-Chul
    Tran, Chung Nguyen
    Lee, Yunsik
    PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 329 - 338
  • [35] An artificial neural network approach for short-term electricity prices forecasting
    Catalao, J. P. S.
    Mariano, S. J. P. S.
    Mendes, V. M. F.
    Ferreira, L. A. F. M.
    2007 INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS APPLICATIONS TO POWER SYSTEMS, VOLS 1 AND 2, 2007, : 411 - +
  • [36] An Artificial Neural Network Approach for Short-term Electric Prices Forecasting
    Tsai, Ming-Tang
    Chen, Chien-Hung
    MANUFACTURING SYSTEMS AND INDUSTRY APPLICATIONS, 2011, 267 : 985 - 990
  • [37] An artificial neural network approach for short-term electricity prices forecasting
    Catalao, J. P. S.
    Mariano, S. J. P. S.
    Mendes, V. M. F.
    Ferreira, L. A. F. M.
    ENGINEERING INTELLIGENT SYSTEMS FOR ELECTRICAL ENGINEERING AND COMMUNICATIONS, 2007, 15 (01): : 15 - 23
  • [38] Aviation visibility forecasting by integrating Convolutional Neural Network and long short-term memory network
    Chen, Chuen-Jyh
    Huang, Chieh-Ni
    Yang, Shih-Ming
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 45 (03) : 5007 - 5020
  • [39] Significant wave height forecasting using long short-term memory neural network in Indonesian waters
    F. A. R. Abdullah
    N. S. Ningsih
    T. M. Al-Khan
    Journal of Ocean Engineering and Marine Energy, 2022, 8 : 183 - 192
  • [40] Significant wave height forecasting using long short-term memory neural network in Indonesian waters
    Abdullah, F. A. R.
    Ningsih, N. S.
    Al-Khan, T. M.
    JOURNAL OF OCEAN ENGINEERING AND MARINE ENERGY, 2022, 8 (02) : 183 - 192