Aviation visibility forecasting by integrating Convolutional Neural Network and long short-term memory network

被引:0
|
作者
Chen, Chuen-Jyh [1 ]
Huang, Chieh-Ni [2 ]
Yang, Shih-Ming [2 ]
机构
[1] Chang Jung Christian Univ, Dept Aviat & Maritime Transportat Management, Tainan, Taiwan
[2] Natl Cheng Kung Univ, Dept Aeronaut & Astronaut, Tainan, Taiwan
关键词
Aviation weather; convolutional neural network; long short-term memory network; weather forecasting; WEATHER; MODELS;
D O I
10.3233/JIFS-230483
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Weather forecasts are essential to aviation safety. Unreliable forecasts not only cause problems to pilots and air traffic controllers, but also lead to aviation accidents and incidents. To enhance the forecast accuracy, an integrated model comprising a convolutional neural network (CNN) and long short-term memory (LSTM) network is developed to achieve improved weather visibility forecasting. In this model, the CNN acts as the precursor of the LSTM network and classifies weather images to increase the visibility forecasting accuracy achieved with the LSTM network. For a dataset with 1500 weather images, the training, validation, and testing accuracy achieved with the integrated model is 100.00%, 97.33%, and 97.67%, respectively. On a numerical dataset of 10 weather features over 10 years, the RMSE and MAPE of an LSTM forecast can be reduced by multiple linear regression from RMSE 12.02 to 11.91 and 44.46% to 39.02%, respectively, and further by the Pearson's correlation coefficients to 10.12 and 36.77%, respectively. By using CNN result as precursor to LSTM, the visibility forecast by integrating both can decrease the RMSE and MAPE to 2.68 and 13.41%, respectively. The integration by deep learning is shown an effective, accurate aviation weather forecast.
引用
收藏
页码:5007 / 5020
页数:14
相关论文
共 50 条
  • [1] Production Forecasting with the Interwell Interference by Integrating Graph Convolutional and Long Short-Term Memory Neural Network
    Du, Enda
    Liu, Yuetian
    Cheng, Ziyan
    Xue, Liang
    Ma, Jing
    He, Xuan
    [J]. SPE RESERVOIR EVALUATION & ENGINEERING, 2022, 25 (02) : 197 - 213
  • [2] Forecasting nonadiabatic dynamics using hybrid convolutional neural network/long short-term memory network
    Wu, Daxin
    Hu, Zhubin
    Li, Jiebo
    Sun, Xiang
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (22):
  • [3] Deep solar radiation forecasting with convolutional neural network and long short-term memory network algorithms
    Ghimire, Sujan
    Deo, Ravinesh C.
    Raj, Nawin
    Mi, Jianchun
    [J]. APPLIED ENERGY, 2019, 253
  • [4] COMPARATIVE STUDY OF CONVOLUTIONAL NEURAL NETWORK AND LONG SHORT-TERM MEMORY NETWORK FOR SOLAR IRRADIANCE FORECASTING
    Behera, Sasmita
    Bhoi, Sapnil S.
    Mishra, Asutosh
    Nayak, Silon S.
    Panda, Subrat K.
    Patnaik, Soumik S.
    [J]. JOURNAL OF ENGINEERING SCIENCE AND TECHNOLOGY, 2022, 17 (03): : 1845 - 1856
  • [5] DeepYield: A combined convolutional neural network with long short-term memory for crop yield forecasting
    Gavahi, Keyhan
    Abbaszadeh, Peyman
    Moradkhani, Hamid
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2021, 184
  • [6] A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network
    Tian, Chujie
    Ma, Jian
    Zhang, Chunhong
    Zhan, Panpan
    [J]. ENERGIES, 2018, 11 (12)
  • [7] Forecasting a Short-Term Photovoltaic Power Model Based on Improved Snake Optimization, Convolutional Neural Network, and Bidirectional Long Short-Term Memory Network
    Wang, Yonggang
    Yao, Yilin
    Zou, Qiuying
    Zhao, Kaixing
    Hao, Yue
    [J]. SENSORS, 2024, 24 (12)
  • [8] Short-term runoff forecasting in an alpine catchment with a long short-term memory neural network
    Frank, Corinna
    Russwurm, Marc
    Fluixa-Sanmartin, Javier
    Tuia, Devis
    [J]. FRONTIERS IN WATER, 2023, 5
  • [9] Forecasting the PV Power Utilizing a Combined Convolutional Neural Network and Long Short-Term Memory Model
    Raman, Ramakrishnan
    Mewada, Bhaveshkumar
    Meenakshi, R.
    Jayaseelan, G. M.
    Sharmila, K. Soni
    Taqui, Syed Noeman
    Al-Ammar, Essam A.
    Wabaidur, Saikh Mohammad
    Iqbal, Amjad
    [J]. ELECTRIC POWER COMPONENTS AND SYSTEMS, 2024, 52 (02) : 233 - 249
  • [10] An Effective Short-Term Load Forecasting Methodology Using Convolutional Long Short Term Memory Network
    Rafi, Shafiul Hasan
    Nahid-Al Masood
    Deeba, Shohana Rahman
    [J]. PROCEEDINGS OF 2020 11TH INTERNATIONAL CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING (ICECE), 2020, : 278 - 281