Forecasting cryptocurrency prices using Recurrent Neural Network and Long Short-term Memory

被引:17
|
作者
Nasirtafreshi, I. [1 ]
机构
[1] Islamic Azad Univ, Fac Engn, Dept Artificial Intelligence, Ghods Branch, Tehran, Iran
关键词
Cryptocurrency; Recurrent Neural Network; Long Short-term Memory; Deep learning; Forecasting prices; Time series data;
D O I
10.1016/j.datak.2022.102009
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The rapid development of cryptocurrencies over the past decade is one of the most controversial and ambiguous innovations in the modern global economy. Numerous and unpredictable fluctuations in cryptocurrencies rates, as well as the lack of intelligent and proper management of transactions of this type of currency in most developing countries and users of this type of currency, has led to increased risk and distrust of these roses in investors. Capitalists and investors prefer to invest in programs which have the least risk, the most profit and the least time to achieve the main profit. Therefore, the issue of developing appropriate methods and models for predicting the price of cryptographic products is essential both for the scientific community and for financial analysts, investors and traders. In this research, a new deep learning model is used to predict the price of cryptocurrencies. The proposed model uses a Recurrent Neural Networks (RNN) algorithm based on Long Short-Term Memory (LSTM) method to predict the price. In the presented results of the simulation of the proposed method, factors such as the Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), R-Squared (R2) were compared with other similar methods. Finally, the superiority of the proposed method over other methods was proven.
引用
下载
收藏
页数:12
相关论文
共 50 条
  • [11] Predicting Short-term Traffic Flow by Long Short-Term Memory Recurrent Neural Network
    Tian, Yongxue
    Pan, Li
    2015 IEEE INTERNATIONAL CONFERENCE ON SMART CITY/SOCIALCOM/SUSTAINCOM (SMARTCITY), 2015, : 153 - 158
  • [12] Chemical Substance Classification Using Long Short-Term Memory Recurrent Neural Network
    Zhang, Jinlei
    Liu, Junxiu
    Luo, Yuling
    Fu, Qiang
    Bi, Jinjie
    Qiu, Senhui
    Cao, Yi
    Ding, Xuemei
    2017 17TH IEEE INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY (ICCT 2017), 2017, : 1994 - 1997
  • [13] Research on A Forecasting Model of Wind Power based on Recurrent Neural Network with Long Short-term Memory
    Li, Anying
    Cheng, Lei
    2019 22ND INTERNATIONAL CONFERENCE ON ELECTRICAL MACHINES AND SYSTEMS (ICEMS 2019), 2019, : 1776 - 1779
  • [14] Short-term energy load forecasting using recurrent neural network
    Rashid, T
    Kechadi, T
    Huang, BQ
    Proceedings of the Eighth IASTED International Conference on Artificial Intelligence and Soft Computing, 2004, : 276 - 281
  • [15] Short-term load forecasting using BiLinear recurrent neural network
    Shin, Sung Hwan
    Park, Dong-Chul
    Advances in Neural Networks - ISNN 2007, Pt 3, Proceedings, 2007, 4493 : 111 - 116
  • [16] Very Short Term Wind Speed Forecasting Using Convolutional Long Short Term Memory Recurrent Neural Network
    Nahid, Firuz Ahamed
    Ongsakul, Weerakorn
    Manjiparambil, Nimal Madhu
    2020 INTERNATIONAL CONFERENCE AND UTILITY EXHIBITION ON ENERGY, ENVIRONMENT AND CLIMATE CHANGE (ICUE 2020), 2020,
  • [17] Implementation of Long Short-Term Memory for Gold Prices Forecasting
    Nurhambali, M. R.
    Angraini, Y.
    Fitrianto, A.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2024, 18 (02): : 399 - 422
  • [18] Forecasting nonadiabatic dynamics using hybrid convolutional neural network/long short-term memory network
    Wu, Daxin
    Hu, Zhubin
    Li, Jiebo
    Sun, Xiang
    JOURNAL OF CHEMICAL PHYSICS, 2021, 155 (22):
  • [19] An improved SPEI drought forecasting approach using the long short-term memory neural network
    Dikshit, Abhirup
    Pradhan, Biswajeet
    Huete, Alfredo
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 283
  • [20] Application of Long Short-Term Memory (LSTM) Neural Network for Flood Forecasting
    Le, Xuan-Hien
    Hung Viet Ho
    Lee, Giha
    Jung, Sungho
    WATER, 2019, 11 (07)