q-FRACTIONAL DIRAC TYPE SYSTEMS

被引:4
|
作者
Allahverdiev, Bilender P. [1 ]
Tuna, Huseyin [2 ]
机构
[1] Suleyman Demirel Univ, Fac Arts & Sci, Dept Math, TR-32260 Isparta, Turkey
[2] Mehmet Akif Ersoy Univ, Fac Arts & Sci, Dept Math, TR-15030 Burdur, Turkey
关键词
q-fractional Dirac operator; eigenvalues; eigenfunctions; Q-INTEGRALS; ANALOGS;
D O I
10.21857/mwo1vcjxvy
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to study a regular q-fractional Dirac type system. We investigate the properties of the eigenvalues and the eigenfunctions of this system. By using a fixed point theorem we give a sufficient condition on eigenvalues for the existence and uniqueness of the associated eigenfunctions.
引用
收藏
页码:117 / 130
页数:14
相关论文
共 50 条
  • [21] On the oscillation of q-fractional difference equations
    Abdalla, Bahaaeldin
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [22] q-Fractional Calculus and Equations Preface
    Ismail, Mourad
    Q-FRACTIONAL CALCULUS AND EQUATIONS, 2012, 2056 : IX - +
  • [23] q-Fractional Calculus and Equations Foreword
    Ismail, Mourad
    Q-FRACTIONAL CALCULUS AND EQUATIONS, 2012, 2056 : VII - VIII
  • [24] q-fractional differential equations with uncertainty
    Noeiaghdam, Z.
    Allahviranloo, T.
    Nieto, Juan J.
    SOFT COMPUTING, 2019, 23 (19) : 9507 - 9524
  • [25] A Generalization of the Concept of q-fractional Integrals
    Predrag M.RAJKOVIC
    Sladjana D.MARINKOVIC
    Miomir S.STANKOVIC
    Acta Mathematica Sinica(English Series), 2009, 25 (10) : 1635 - 1646
  • [26] q-fractional differential equations with uncertainty
    Z. Noeiaghdam
    T. Allahviranloo
    Juan J. Nieto
    Soft Computing, 2019, 23 : 9507 - 9524
  • [27] ON THE MITTAG-LEFFLER STABILITY OF Q-FRACTIONAL NONLINEAR DYNAMICAL SYSTEMS
    Jarad, Fahd
    Abdeljawad, Thabet
    Gundogdu, Emrah
    Baleanu, Dumitru
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2011, 12 (04): : 309 - 314
  • [28] Existence of solutions for q-fractional differential equations with nonlocal Erdelyi-Kober q-fractional integral condition
    Jiang, Min
    Huang, Rengang
    AIMS MATHEMATICS, 2020, 5 (06): : 6537 - 6551
  • [29] REGULAR FRACTIONAL DIRAC TYPE SYSTEMS
    Allahverdiev, Bilender P.
    Tuna, Huseyin
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2021, 36 (03): : 489 - 499
  • [30] Tempered fractional Dirac type systems
    Yalcinkaya, Yuksel
    FILOMAT, 2023, 37 (27) : 9135 - 9144