q-FRACTIONAL DIRAC TYPE SYSTEMS

被引:4
|
作者
Allahverdiev, Bilender P. [1 ]
Tuna, Huseyin [2 ]
机构
[1] Suleyman Demirel Univ, Fac Arts & Sci, Dept Math, TR-32260 Isparta, Turkey
[2] Mehmet Akif Ersoy Univ, Fac Arts & Sci, Dept Math, TR-15030 Burdur, Turkey
关键词
q-fractional Dirac operator; eigenvalues; eigenfunctions; Q-INTEGRALS; ANALOGS;
D O I
10.21857/mwo1vcjxvy
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to study a regular q-fractional Dirac type system. We investigate the properties of the eigenvalues and the eigenfunctions of this system. By using a fixed point theorem we give a sufficient condition on eigenvalues for the existence and uniqueness of the associated eigenfunctions.
引用
收藏
页码:117 / 130
页数:14
相关论文
共 50 条
  • [41] On Functional Equation Mixed q-Fractional Integral and Fractional Derivative with q-Integral Condition
    Ahmed, Reda Gamal
    El-Sayed, Ahmed M. A.
    Alrashdi, Muhanna Ali H.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2025, 23
  • [42] Finite-time stability of q-fractional damped difference systems with time delay
    Wang, Jingfeng
    Bai, Chuanzhi
    AIMS MATHEMATICS, 2021, 6 (11): : 12011 - 12027
  • [43] q-Fractional calculus for Rubin's q-difference operator
    Mansour, Zeinab S. I.
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [44] A difference method for solving the q-fractional differential equations
    Zhang, Tie
    Tang, Yongchao
    APPLIED MATHEMATICS LETTERS, 2019, 98 : 292 - 299
  • [45] The delta q-fractional Gronwall inequality on time scale
    Mahdi, Nada K.
    Khudair, Ayad R.
    RESULTS IN CONTROL AND OPTIMIZATION, 2023, 12
  • [46] The solution theory of the nonlinear q-fractional differential equations
    Zhang, Tie
    Guo, Qingxin
    APPLIED MATHEMATICS LETTERS, 2020, 104
  • [47] Study of New Class of q-Fractional Integral Operator
    Momenzadeh, M.
    Mahmudov, N. I.
    FILOMAT, 2019, 33 (17) : 5713 - 5721
  • [48] Inverse operators, q-fractional integrals, and q-Bernoulli polynomials
    Ismail, MEH
    Rahman, M
    JOURNAL OF APPROXIMATION THEORY, 2002, 114 (02) : 269 - 307
  • [49] A method for solving differential equations of q-fractional order
    Koca, Ilknur
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 : 1 - 5
  • [50] q-Fractional calculus for Rubin’s q-difference operator
    Zeinab SI Mansour
    Advances in Difference Equations, 2013