A Generalization of the Concept of q-fractional Integrals

被引:0
|
作者
Predrag M.RAJKOVIC [1 ]
Sladjana D.MARINKOVIC [2 ]
Miomir S.STANKOVIC [3 ]
机构
[1] Faculty of Mechanical Engineering, University of Nis
[2] Faculty of Electronic Engineering, University of Nis
[3] Faculty of Occupational Safety, University of Nis
关键词
basic hypergeometric functions; q-integral; q-derivative; fractional integrals; Mittag Leffier function;
D O I
暂无
中图分类号
O172.2 [积分学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the fractional q-integral with variable lower limit of integration.We prove the semigroup property of these integrals, and a formula of Leibniz type. Finally, we evaluatefractional q-integrals of some functions. The consideration of q-exponential function in that sense leadsto q-analogs of Mittag-Leffler function.
引用
收藏
页码:1635 / 1646
页数:12
相关论文
共 50 条
  • [1] A generalization of the concept of q-fractional integrals
    Rajkovic, Predrag M.
    Marinkovic, Sladjana D.
    Stankovic, Miomir S.
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2009, 25 (10) : 1635 - 1646
  • [2] A generalization of the concept of q-fractional integrals
    Predrag M. Rajković
    Sladjana D. Marinković
    Miomir S. Stanković
    Acta Mathematica Sinica, English Series, 2009, 25 : 1635 - 1646
  • [3] Inverse operators, q-fractional integrals, and q-Bernoulli polynomials
    Ismail, MEH
    Rahman, M
    JOURNAL OF APPROXIMATION THEORY, 2002, 114 (02) : 269 - 307
  • [4] q-Fractional Langevin Differential Equation with q-Fractional Integral Conditions
    Wang, Wuyang
    Khalid, Khansa Hina
    Zada, Akbar
    Ben Moussa, Sana
    Ye, Jun
    MATHEMATICS, 2023, 11 (09)
  • [5] q-fractional Askey-Wilson integrals and related semigroups of operators
    Ismail, Mourad E. H.
    Zhang, Ruiming
    Zhou, Keru
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 442
  • [6] Other q-Fractional Calculi
    Ismail, Mourad
    Q-FRACTIONAL CALCULUS AND EQUATIONS, 2012, 2056 : 147 - 173
  • [7] Analysis of coupled system of q-fractional Langevin differential equations with q-fractional integral conditions
    Zhang, Keyu
    Khalid, Khansa Hina
    Zada, Akbar
    Popa, Ioan-Lucian
    Xu, Jiafa
    Kallekh, Afef
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (10) : 8135 - 8159
  • [8] On generalization fractional integrals
    Sarikaya M.Z.
    Yildirim H.
    Lobachevskii Journal of Mathematics, 2011, 32 (4) : 339 - 344
  • [9] Generalization of Homotopy Analysis Method for q-Fractional Non-linear Differential Equations
    Madhavi, B.
    Kumar, G. Suresh
    Nagalakshmi, S.
    Rao, T. S.
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2024, 22
  • [10] A generalized q-fractional Gronwall inequality and its applications to nonlinear delay q-fractional difference systems
    Abdeljawad, Thabet
    Alzabut, Jehad
    Baleanu, Dumitru
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016,