A Generalization of the Concept of q-fractional Integrals

被引:0
|
作者
Predrag M.RAJKOVIC [1 ]
Sladjana D.MARINKOVIC [2 ]
Miomir S.STANKOVIC [3 ]
机构
[1] Faculty of Mechanical Engineering, University of Nis
[2] Faculty of Electronic Engineering, University of Nis
[3] Faculty of Occupational Safety, University of Nis
关键词
basic hypergeometric functions; q-integral; q-derivative; fractional integrals; Mittag Leffier function;
D O I
暂无
中图分类号
O172.2 [积分学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the fractional q-integral with variable lower limit of integration.We prove the semigroup property of these integrals, and a formula of Leibniz type. Finally, we evaluatefractional q-integrals of some functions. The consideration of q-exponential function in that sense leadsto q-analogs of Mittag-Leffler function.
引用
收藏
页码:1635 / 1646
页数:12
相关论文
共 50 条
  • [21] q-Fractional Calculus and Equations Foreword
    Ismail, Mourad
    Q-FRACTIONAL CALCULUS AND EQUATIONS, 2012, 2056 : VII - VIII
  • [22] q-fractional differential equations with uncertainty
    Noeiaghdam, Z.
    Allahviranloo, T.
    Nieto, Juan J.
    SOFT COMPUTING, 2019, 23 (19) : 9507 - 9524
  • [23] q-fractional differential equations with uncertainty
    Z. Noeiaghdam
    T. Allahviranloo
    Juan J. Nieto
    Soft Computing, 2019, 23 : 9507 - 9524
  • [24] Existence of solutions for q-fractional differential equations with nonlocal Erdelyi-Kober q-fractional integral condition
    Jiang, Min
    Huang, Rengang
    AIMS MATHEMATICS, 2020, 5 (06): : 6537 - 6551
  • [25] q-fractional integral operators with two parameters
    Ismail, Mourad E. H.
    Zhou, Keru
    ADVANCES IN APPLIED MATHEMATICS, 2024, 154
  • [26] A Q-fractional version of Ito's formula
    Grecksch, Wilfried
    Roth, Christian
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2011, 56 (02): : 369 - 380
  • [27] HARDY TYPE INEQUALITIES FOR FRACTIONAL AND q-FRACTIONAL INTEGRAL OPERATORS
    Bouzaffour, Fethi
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (02): : 601 - 609
  • [28] Cubic q-Fractional Fuzzy Sets and Their Applications
    Gulistan, Muhammad
    Pedrycz, Witold
    INTERNATIONAL JOURNAL OF FUZZY SYSTEMS, 2023, 25 (06) : 2326 - 2337
  • [29] A remark on the q-fractional order differential equations
    Tang, Yongchao
    Zhang, Tie
    APPLIED MATHEMATICS AND COMPUTATION, 2019, 350 : 198 - 208
  • [30] Riemann-Liouville q-Fractional Calculi
    Ismail, Mourad
    Q-FRACTIONAL CALCULUS AND EQUATIONS, 2012, 2056 : 107 - 146