Gruss type integral inequalities for generalized Riemann-Liouville k-fractional integrals

被引:19
|
作者
Mubeen, Shahid [1 ]
Iqbal, Sana [1 ]
机构
[1] Univ Sargodha, Dept Math, Sargodha, Pakistan
关键词
Gruss inequality; Riemann-Liouville fractional integral; Pochhammar k-symbol; gamma k-function; inequalities;
D O I
10.1186/s13660-016-1052-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Integral inequalities are considered to be important as they have many applications described by a number of researchers. Moreover, the theory of fractional calculus is used in solving differential, integral, and integro-differential equations and also in various other problems involving special functions. In this research article, we present the improved version of generalizations for a Gruss type integral inequality by taking a generalized Riemann-Liouville fractional integral in terms of a new parameter k > 0. We contribute in the on going research by providing mathematical results that can be verified easily.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] NEW CHEBYSHEV-TYPE INEQUALITIES FOR THE GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL WITH RESPECT TO AN INCREASING FUNCTION
    Varosanec, Sanja
    [J]. JOURNAL OF MATHEMATICAL INEQUALITIES, 2023, 17 (04): : 1351 - 1361
  • [42] New Fractional Integral Inequalities Pertaining to Caputo-Fabrizio and Generalized Riemann-Liouville Fractional Integral Operators
    Tariq, Muhammad
    Alsalami, Omar Mutab
    Shaikh, Asif Ali
    Nonlaopon, Kamsing
    Ntouyas, Sotiris K.
    [J]. AXIOMS, 2022, 11 (11)
  • [43] Hermite-Hadamard type inequalities for generalized Riemann-Liouville fractional integrals of h-convex functions
    Dragomir, Silvestru Sever
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (03) : 2364 - 2380
  • [44] NEW GENERAL INTEGRAL INEQUALITIES FOR LIPSCHITZIAN FUNCTIONS VIA RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS AND APPLICATIONS
    Iscan, Imdat
    Kunt, Mehmet
    Gozutok, Nazli Yazici
    Koroglu, Tuncay
    [J]. JOURNAL OF INEQUALITIES AND SPECIAL FUNCTIONS, 2016, 7 (04): : 1 - 12
  • [45] (k, s)-Riemann-Liouville fractional integral and applications
    Sarikaya, Mehmet Zeki
    Dahmani, Zoubir
    Kiris, Mehmet Eyup
    Ahmad, Farooq
    [J]. HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2016, 45 (01): : 77 - 89
  • [46] On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals
    Abdeljawad, Thabet
    Ali, Muhammad Aamir
    Mohammed, Pshtiwan Othman
    Kashuri, Artion
    [J]. AIMS MATHEMATICS, 2021, 6 (01): : 712 - 725
  • [47] Some Riemann-Liouville fractional integral inequalities for convex functions
    Farid, Ghulam
    [J]. JOURNAL OF ANALYSIS, 2019, 27 (04): : 1095 - 1102
  • [48] Certain generalized Riemann-Liouville fractional integrals inequalities based on exponentially (h, m)-preinvexity
    Chen, Junxi
    Luo, Chunyan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 530 (02)
  • [49] Some new parameterized inequalities based on Riemann-Liouville fractional integrals
    Kara, Hasan
    Budak, Huseyin
    Akdemir, Ahmet Ocak
    [J]. FILOMAT, 2023, 37 (23) : 7867 - 7880
  • [50] WEIGHTED INEQUALITIES FOR RIEMANN-LIOUVILLE FRACTIONAL INTEGRALS OF ORDER ONE AND GREATER
    MARTINREYES, FJ
    SAWYER, E
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 106 (03) : 727 - 733