Gruss type integral inequalities for generalized Riemann-Liouville k-fractional integrals

被引:19
|
作者
Mubeen, Shahid [1 ]
Iqbal, Sana [1 ]
机构
[1] Univ Sargodha, Dept Math, Sargodha, Pakistan
关键词
Gruss inequality; Riemann-Liouville fractional integral; Pochhammar k-symbol; gamma k-function; inequalities;
D O I
10.1186/s13660-016-1052-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Integral inequalities are considered to be important as they have many applications described by a number of researchers. Moreover, the theory of fractional calculus is used in solving differential, integral, and integro-differential equations and also in various other problems involving special functions. In this research article, we present the improved version of generalizations for a Gruss type integral inequality by taking a generalized Riemann-Liouville fractional integral in terms of a new parameter k > 0. We contribute in the on going research by providing mathematical results that can be verified easily.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] A Generalized q-Gruss Inequality Involving the Riemann-Liouville Fractional q-Integrals
    Secer, Aydin
    Purohit, S. D.
    Selvakumaran, K. A.
    Bayram, Mustafa
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2014,
  • [32] Some inequalities via ψ-Riemann-Liouville fractional integrals
    Mehreen, Naila
    Anwar, Matloob
    [J]. AIMS MATHEMATICS, 2019, 4 (05): : 1403 - 1415
  • [33] Some integral inequalities for (k, s) - Riemann-Liouville fractional operators
    Houas, Mohamed
    Dahmani, Zoubir
    Sarikaya, Mehmet Zeki
    [J]. JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2018, 21 (7-8) : 1575 - 1585
  • [34] Montgomery Identity and Ostrowski Type Inequalities for Riemann-Liouville Fractional Integral
    Aljinovic, Andrea Aglic
    [J]. JOURNAL OF MATHEMATICS, 2014, 2014
  • [35] Gruss type inequalities for generalized fractional integrals
    Erden, Samet
    Sarikaya, Mehmet Zeki
    Budak, Huseyin
    [J]. INTERNATIONAL CONFERENCE ON ADVANCES IN NATURAL AND APPLIED SCIENCES: ICANAS 2016, 2016, 1726
  • [36] INEQUALITIES GENERATED WITH RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL OPERATOR
    Gurbuz, M.
    Ozturk, O.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2019, 9 (01): : 91 - 100
  • [37] Simpson Type Integral Inequalities for Convex Functions via Riemann-Liouville Integrals
    Set, Erhan
    Akdemir, Ahmet Ocak
    Ozdemir, M. Emin
    [J]. FILOMAT, 2017, 31 (14) : 4415 - 4420
  • [38] Hermite-Hadamard type inequalities for multiplicative Riemann-Liouville fractional integrals
    Du, Tingsong
    Peng, Yu
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2024, 440
  • [39] Weighted Ostrowski, trapezoid and midpoint type inequalities for Riemann-Liouville fractional integrals
    Budak, Huseyin
    Pehlivan, Ebru
    [J]. AIMS MATHEMATICS, 2020, 5 (03): : 1960 - 1984
  • [40] General (k, p)-Riemann-Liouville fractional integrals
    Benaissa, Bouharket
    Budak, Huseyin
    [J]. FILOMAT, 2024, 38 (08) : 2579 - 2586