THE FIRST POSITIVE EIGENVALUE OF THE DIRAC OPERATOR ON 3-DIMENSIONAL SASAKIAN MANIFOLDS

被引:2
|
作者
Kim, Eui Chul [1 ]
机构
[1] Andong Natl Univ, Coll Educ, Dept Math, Andong 760749, South Korea
关键词
Dirac operator; eigenvalues; Sasakian manifolds;
D O I
10.4134/BKMS.2013.50.2.431
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M-3, g) be a 3-dimensional closed Sasakian spin manifold. Let S-min, denote the minimum of the scalar curvature of (M-3, g). Let lambda(+)(1) > 0 be the first positive eigenvalue of the Dirac operator of (M-3, g). We proved in [13] that if lambda(+)(1) belongs to the interval lambda(+)(1) is an element of (1/2, 5/2), then lambda(+)(1) satisfies lambda(+)(1) >= S-min+6/8. In this paper, we remove the restriction "if lambda(+)(1) belongs to the interval lambda(+)(1) is an element of (1/2, 5/2)" and prove [GRAPHICS] .
引用
收藏
页码:431 / 440
页数:10
相关论文
共 50 条