The eigenvalue problem of one-dimensional Dirac operator

被引:0
|
作者
Jacek Karwowski
Artur Ishkhanyan
Andrzej Poszwa
机构
[1] Nicolaus Copernicus University,Institute of Physics
[2] Russian-Armenian University,Institute for Physical Research
[3] NAS of Armenia,Faculty of Mathematics and Computer Science
[4] University of Warmia and Mazury,undefined
来源
关键词
One-dimensional Dirac equation; Vector potential; Scalar potential; Pseudo-scalar potential; Super-symmetry; Effective mass; Schrödinger equation; Lévy-Leblond equation; Bound states; Non-relativistic limit; Pauli approximation;
D O I
暂无
中图分类号
学科分类号
摘要
The properties of the eigenvalue problem of the one-dimensional Dirac operator are discussed in terms of the mutual relations between vector, scalar and pseudo-scalar contributions to the potential. Relations to the exact solubility are analyzed.
引用
收藏
相关论文
共 50 条
  • [1] The eigenvalue problem of one-dimensional Dirac operator
    Karwowski, Jacek
    Ishkhanyan, Artur
    Poszwa, Andrzej
    [J]. THEORETICAL CHEMISTRY ACCOUNTS, 2020, 139 (12)
  • [2] Computer Assisted Verification of the Eigenvalue Problem for One-Dimensional Schrodinger Operator
    Sekisaka, Ayuki
    Nii, Shunsaku
    [J]. MATHEMATICAL CHALLENGES IN A NEW PHASE OF MATERIALS SCIENCE, 2016, 166 : 145 - 157
  • [3] Eigenvalues of a One-Dimensional Dirac Operator Pencil
    Daniel M. Elton
    Michael Levitin
    Iosif Polterovich
    [J]. Annales Henri Poincaré, 2014, 15 : 2321 - 2377
  • [4] One-dimensional quasilinear eigenvalue problem
    D. P. Kostomarov
    [J]. Doklady Mathematics, 2010, 82 : 634 - 637
  • [5] One-Dimensional Quasilinear Eigenvalue Problem
    Kostomarov, D. P.
    [J]. DOKLADY MATHEMATICS, 2010, 82 (01) : 634 - 637
  • [6] Eigenvalues of a One-Dimensional Dirac Operator Pencil
    Elton, Daniel M.
    Levitin, Michael
    Polterovich, Iosif
    [J]. ANNALES HENRI POINCARE, 2014, 15 (12): : 2321 - 2377
  • [7] An inverse eigenvalue problem for one dimensional Dirac operators
    M. Kiss
    [J]. Acta Mathematica Hungarica, 2017, 152 : 326 - 335
  • [8] AN INVERSE EIGENVALUE PROBLEM FOR ONE DIMENSIONAL DIRAC OPERATORS
    Kiss, M.
    [J]. ACTA MATHEMATICA HUNGARICA, 2017, 152 (02) : 326 - 335
  • [9] OPTIMIZATION OF THE PRINCIPAL EIGENVALUE OF THE ONE-DIMENSIONAL SCHRODINGER OPERATOR
    Emamizadeh, Behrouz
    Fernandes, Ryan I.
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2008,
  • [10] On a Eigenvalue Problem Involving Dirac Operator
    Lian Pan
    Gejun Bao
    [J]. Advances in Applied Clifford Algebras, 2015, 25 : 415 - 424