An inverse eigenvalue problem for one dimensional Dirac operators

被引:0
|
作者
M. Kiss
机构
[1] Budapest University of Technology and Economics,Department of Differential Equations, Institute of Mathematics
来源
Acta Mathematica Hungarica | 2017年 / 152卷
关键词
Dirac equation; inverse eigenvalue problem; exponential basis; primary 34A55; 34B20; secondary 34L40; 47A75;
D O I
暂无
中图分类号
学科分类号
摘要
We consider an inverse eigenvalue problem for Dirac operators on finite intervals. We show that if for a μ∈C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mu\in\mathbb{C}}$$\end{document} the system {exp2iλnx\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\{\exp{2i\lambda_nx}}$$\end{document}, exp2iμx}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\exp{2i\mu x}\}}$$\end{document} is closed in Lp[-π,π]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^p[-\pi,\pi]}$$\end{document}, then there is at most one Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${L^p}$$\end{document}-potential with the eigenvalues λn\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\lambda_n}$$\end{document}. The result corresponds to the case of Schrödinger operators.
引用
收藏
页码:326 / 335
页数:9
相关论文
共 50 条
  • [1] AN INVERSE EIGENVALUE PROBLEM FOR ONE DIMENSIONAL DIRAC OPERATORS
    Kiss, M.
    [J]. ACTA MATHEMATICA HUNGARICA, 2017, 152 (02) : 326 - 335
  • [2] Inverse eigenvalue problem for a class of Dirac operators with discontinuous coefficient
    Mamedov, Khanlar R.
    Akcay, Ozge
    [J]. BOUNDARY VALUE PROBLEMS, 2014,
  • [3] Inverse eigenvalue problem for a class of Dirac operators with discontinuous coefficient
    Khanlar R Mamedov
    Ozge Akcay
    [J]. Boundary Value Problems, 2014
  • [4] The eigenvalue problem of one-dimensional Dirac operator
    Jacek Karwowski
    Artur Ishkhanyan
    Andrzej Poszwa
    [J]. Theoretical Chemistry Accounts, 2020, 139
  • [5] The eigenvalue problem of one-dimensional Dirac operator
    Karwowski, Jacek
    Ishkhanyan, Artur
    Poszwa, Andrzej
    [J]. THEORETICAL CHEMISTRY ACCOUNTS, 2020, 139 (12)
  • [6] On the missing eigenvalue problem for Dirac operators
    Wang, Yu Ping
    Yurko, V. A.
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 80 : 41 - 47
  • [7] On the discrete one-dimensional inverse transmission eigenvalue problem
    Papanicolaou, Vassilis G.
    Doumas, Aristides V.
    [J]. INVERSE PROBLEMS, 2011, 27 (01)
  • [8] The inverse problem for Hill and Dirac operators
    Korotyaev, EL
    [J]. DOKLADY AKADEMII NAUK, 1999, 365 (06) : 730 - 733
  • [9] Half inverse problem and interior inverse problem for the Dirac operators with discontinuity
    Wang, Kai
    Zhang, Ran
    Yang, Chuan-Fu
    [J]. ANALYSIS AND MATHEMATICAL PHYSICS, 2024, 14 (03)
  • [10] THE INVERSE PROBLEM OF ONE CLASS OF DIRAC OPERATORS WITH DISCONTINUOUS COEFFICIENTS BY THE WEYL FUNCTION
    Latifova, Aygun R.
    [J]. PROCEEDINGS OF THE INSTITUTE OF MATHEMATICS AND MECHANICS, 2005, 22 (30): : 65 - 70