The eigenvalue problem of one-dimensional Dirac operator

被引:0
|
作者
Jacek Karwowski
Artur Ishkhanyan
Andrzej Poszwa
机构
[1] Nicolaus Copernicus University,Institute of Physics
[2] Russian-Armenian University,Institute for Physical Research
[3] NAS of Armenia,Faculty of Mathematics and Computer Science
[4] University of Warmia and Mazury,undefined
来源
关键词
One-dimensional Dirac equation; Vector potential; Scalar potential; Pseudo-scalar potential; Super-symmetry; Effective mass; Schrödinger equation; Lévy-Leblond equation; Bound states; Non-relativistic limit; Pauli approximation;
D O I
暂无
中图分类号
学科分类号
摘要
The properties of the eigenvalue problem of the one-dimensional Dirac operator are discussed in terms of the mutual relations between vector, scalar and pseudo-scalar contributions to the potential. Relations to the exact solubility are analyzed.
引用
收藏
相关论文
共 50 条
  • [41] Inverse Spectral Problem for the One-Dimensional Stark Operator on the Semiaxis
    A. R. Latifova
    A. Kh. Khanmamedov
    [J]. Ukrainian Mathematical Journal, 2020, 72 : 568 - 584
  • [42] On the Inverse Spectral Problem for the One-dimensional Stark Operator on the Semiaxis
    Khanmamedov, A. Kh.
    Huseynova, Y. I.
    [J]. AZERBAIJAN JOURNAL OF MATHEMATICS, 2024, 14 (01): : 122 - 132
  • [43] Inverse Spectral Problem for the One-Dimensional Stark Operator on the Semiaxis
    Latifova, A. R.
    Khanmamedov, A. Kh.
    [J]. UKRAINIAN MATHEMATICAL JOURNAL, 2020, 72 (04) : 568 - 584
  • [44] Stationary Measure Induced by the Eigenvalue Problem of the One-Dimensional Hadamard Walk
    Komatsu, Takashi
    Konno, Norio
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2022, 187 (01)
  • [45] Stationary Measure Induced by the Eigenvalue Problem of the One-Dimensional Hadamard Walk
    Takashi Komatsu
    Norio Konno
    [J]. Journal of Statistical Physics, 2022, 187
  • [46] THE EIGENVALUE SUM OF A ONE-DIMENSIONAL POTENTIAL
    FEFFERMAN, C
    SECO, L
    [J]. ADVANCES IN MATHEMATICS, 1994, 108 (02) : 263 - 335
  • [47] EIGENVALUE ANALYSIS OF THE LAX OPERATOR FOR THE ONE-DIMENSIONAL CUBIC NONLINEAR DEFOCUSING SCHRODINGER EQUATION
    Liao, Xian
    Plum, Michael
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (06) : 7399 - 7425
  • [48] EIGENVALUE BOUNDS FOR THE DIRAC OPERATOR
    LOTT, J
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1986, 125 (01) : 117 - 126
  • [49] ONE-DIMENSIONAL COUPLED DIRAC EQUATIONS
    GLASSEY, RT
    [J]. TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1977, 231 (02) : 531 - 539
  • [50] Discretizing the one-dimensional Dirac equation
    Wessels, PPF
    Caspers, WJ
    Wiegel, FW
    [J]. EUROPHYSICS LETTERS, 1999, 46 (02): : 123 - 126