THE FIRST POSITIVE EIGENVALUE OF THE DIRAC OPERATOR ON 3-DIMENSIONAL SASAKIAN MANIFOLDS

被引:2
|
作者
Kim, Eui Chul [1 ]
机构
[1] Andong Natl Univ, Coll Educ, Dept Math, Andong 760749, South Korea
关键词
Dirac operator; eigenvalues; Sasakian manifolds;
D O I
10.4134/BKMS.2013.50.2.431
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let (M-3, g) be a 3-dimensional closed Sasakian spin manifold. Let S-min, denote the minimum of the scalar curvature of (M-3, g). Let lambda(+)(1) > 0 be the first positive eigenvalue of the Dirac operator of (M-3, g). We proved in [13] that if lambda(+)(1) belongs to the interval lambda(+)(1) is an element of (1/2, 5/2), then lambda(+)(1) satisfies lambda(+)(1) >= S-min+6/8. In this paper, we remove the restriction "if lambda(+)(1) belongs to the interval lambda(+)(1) is an element of (1/2, 5/2)" and prove [GRAPHICS] .
引用
收藏
页码:431 / 440
页数:10
相关论文
共 50 条
  • [21] ON 3-DIMENSIONAL TRANS-SASAKIAN MANIFOLDS ADMITTING *-RICCI SOLITONS
    Haseeb, Abdul
    Harish, H.
    Prakasha, D. G.
    JORDAN JOURNAL OF MATHEMATICS AND STATISTICS, 2022, 15 (01): : 105 - 121
  • [22] A study on Legendre curves in 3-dimensional trans-Sasakian manifolds
    Sarkar A.
    Hui S.K.
    Sen M.
    Lobachevskii Journal of Mathematics, 2014, 35 (1) : 11 - 18
  • [23] ON 3-DIMENSIONAL QUASI-PARA-SASAKIAN MANIFOLDS AND RICCI SOLITONS
    Prakasha, Doddabhadrappla Gowda
    Veeresha, Pundikala
    Venkatesha, Venkatesha
    Kumara, Huchchappa Aruna
    TRANSACTIONS OF A RAZMADZE MATHEMATICAL INSTITUTE, 2022, 176 (02) : 245 - 254
  • [24] A note on η-Ricci solitons in 3-dimensional trans-Sasakian manifolds
    Pahan, Sampa
    ANNALS OF THE UNIVERSITY OF CRAIOVA-MATHEMATICS AND COMPUTER SCIENCE SERIES, 2020, 47 (01): : 76 - 87
  • [25] Critical Point Equation on 3-Dimensional Trans-Sasakian Manifolds
    Dey, Dibakar
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (02): : 653 - 663
  • [26] The first eigenvalue of the Dirac operator in a conformal class
    Ammann, Bernd
    Humbert, Emmanuel
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (5-6) : 833 - 844
  • [27] Eigenvalue estimates for the Dirac operator on quaternionic Kähler manifolds
    W. Kramer
    U. Semmelmann
    G. Weingart
    Mathematische Zeitschrift, 1999, 230 : 727 - 751
  • [28] ON 3-DIMENSIONAL POSITIVE INDEX CANONIC MANIFOLDS
    BENVENISTE, X
    NAGOYA MATHEMATICAL JOURNAL, 1985, 97 (MAR) : 137 - 167
  • [29] FIRST-KIND BOUNDARY INTEGRAL EQUATIONS FOR THE DIRAC OPERATOR IN 3-DIMENSIONAL LIPSCHITZ DOMAINS
    Schulz, Erick
    Hiptmair, Ralf
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (01) : 616 - 648
  • [30] MANIFOLDS WITH OPERATOR OF POSITIVE CURVATURE HAVING SAME FIRST EIGENVALUE OF P SPECTRUM AS SPHERE
    GALLOT, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1973, 277 (11): : 457 - 459