Microscale Self-Assembly of Upconversion Nanoparticles Driven by Block Copolymer

被引:5
|
作者
Su, Qianqian [1 ,2 ]
Zhou, Meng-Tao [1 ]
Zhou, Ming-Zhu [1 ]
Sun, Qiang [3 ]
Ai, Taotao [4 ]
Su, Yan [5 ]
机构
[1] Shanghai Univ, Inst Nanochem & Nanobiol, Shanghai, Peoples R China
[2] Natl Univ Singapore, Dept Chem, Singapore, Singapore
[3] NUS Suzhou Res Inst, Ctr Funct Mat, Suzhou, Peoples R China
[4] Shaanxi Univ Technol, Sch Mat Sci & Engn, Natl & Local Joint Engn Lab Slag Comprehens Utili, Hanzhong, Peoples R China
[5] Agcy Sci Technol & Res, Genome Inst, Singapore, Singapore
来源
FRONTIERS IN CHEMISTRY | 2020年 / 8卷
基金
中国国家自然科学基金;
关键词
lanthanide-doped nanoparticles; upconversion nanoparticle; self-assembly; micro-scale; nanoparticles belt; PEO-PPO-PEO; LUMINESCENT MATERIALS; TRIBLOCK COPOLYMERS; ENERGY-TRANSFER; NANOCRYSTALS; NANOSTRUCTURES; RESONANCE; CHAINS;
D O I
10.3389/fchem.2020.00836
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lanthanide-based upconversion nanoparticles can convert low-energy excitation to high-energy emission. The self-assembled upconversion nanoparticles with unique structures have considerable promise in sensors and optical devices due to intriguing properties. However, the assembly of isotropic nanocrystals into anisotropic structures is a fundamental challenge caused by the difficulty in controlling interparticle interactions. Herein, we report a novel approach for the preparation of the chain-like assemblies of upconversion nanoparticles at different scales from nano-scale to micro-scale. The dimension of chain-like assembly can be fine-tuned using various incubation times. Our study observed Y-junction aggregate morphology due to the flexible nature of amphiphilic block copolymer. Furthermore, the prepared nanoparticle assemblies of upconversion nanoparticles with lengths up to several micrometers can serve as novel luminescent nanostructure and offer great opportunities in the fields of optical applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Dissipative self-assembly of a dual-responsive block copolymer driven by a chemical oscillator
    Li, Xuewei
    Wang, Guangtong
    Zhang, Qianqian
    Liu, Yang
    Sun, Tiedong
    Liu, Shaoqin
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 615 : 732 - 739
  • [32] Encapsulation of phenylacetic acid in block copolymer nanoparticles during polymerization induced self-assembly
    Li, Guanrui
    Barzycki, Daniel C.
    Ricarte, Ralm G.
    AICHE JOURNAL, 2023, 69 (05)
  • [33] Synchrotron Radiation for the Understanding of Block Copolymer Self-assembly
    Fernandez-Regulez, Marta
    Pinto-Gomez, Christian
    Perez-Murano, Francesc
    JOURNAL OF PHOTOPOLYMER SCIENCE AND TECHNOLOGY, 2019, 32 (03) : 423 - 427
  • [34] Block copolymer nanotubes derived from self-assembly
    Liu, Guojun
    Advances in Polymer Science, 2008, 220 (01) : 29 - 64
  • [35] Multicomponent nanoparticles via self-assembly with cross-linked block copolymer surfactants
    Kim, Byeong-Su
    Taton, T. Andrew
    LANGMUIR, 2007, 23 (04) : 2198 - 2202
  • [36] Block Copolymer Nanotubes Derived from Self-Assembly
    Liu, Guojun
    SELF-ASSEMBLED NANOMATERIALS II: NANOTUBES, 2008, 220 : 29 - 64
  • [37] Machine Learning Predictions of Block Copolymer Self-Assembly
    Tu, Kun-Hua
    Huang, Hejin
    Lee, Sangho
    Lee, Wonmoo
    Sun, Zehao
    Alexander-Katz, Alfredo
    Ross, Caroline A.
    ADVANCED MATERIALS, 2020, 32 (52)
  • [38] Preparation and self-assembly of poly(ferrocenophane) block copolymer
    Tao, C
    Li, W
    Wang, JJ
    Jiang, GH
    PROGRESS IN CHEMISTRY, 2004, 16 (05) : 797 - 803
  • [39] Electrochemically controlled self-assembly of an organometallic block copolymer
    Eitouni, Hany B.
    Balsara, Nitash P.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (50) : 16248 - 16252
  • [40] Multicomponent Nanopatterns by Directed Block Copolymer Self-Assembly
    Shin, Dong Ok
    Mun, Jeong Ho
    Hwang, Geon-Tae
    Yoon, Jong Moon
    Kim, Ju Young
    Yun, Je Moon
    Yang, Yong-Biao
    Oh, Youngtak
    Lee, Jeong Yong
    Shin, Jonghwa
    Lee, Keon Jae
    Park, Soojin
    Kim, Jaeup U.
    Kim, Sang Ouk
    ACS NANO, 2013, 7 (10) : 8899 - 8907