Microscale Self-Assembly of Upconversion Nanoparticles Driven by Block Copolymer

被引:5
|
作者
Su, Qianqian [1 ,2 ]
Zhou, Meng-Tao [1 ]
Zhou, Ming-Zhu [1 ]
Sun, Qiang [3 ]
Ai, Taotao [4 ]
Su, Yan [5 ]
机构
[1] Shanghai Univ, Inst Nanochem & Nanobiol, Shanghai, Peoples R China
[2] Natl Univ Singapore, Dept Chem, Singapore, Singapore
[3] NUS Suzhou Res Inst, Ctr Funct Mat, Suzhou, Peoples R China
[4] Shaanxi Univ Technol, Sch Mat Sci & Engn, Natl & Local Joint Engn Lab Slag Comprehens Utili, Hanzhong, Peoples R China
[5] Agcy Sci Technol & Res, Genome Inst, Singapore, Singapore
来源
FRONTIERS IN CHEMISTRY | 2020年 / 8卷
基金
中国国家自然科学基金;
关键词
lanthanide-doped nanoparticles; upconversion nanoparticle; self-assembly; micro-scale; nanoparticles belt; PEO-PPO-PEO; LUMINESCENT MATERIALS; TRIBLOCK COPOLYMERS; ENERGY-TRANSFER; NANOCRYSTALS; NANOSTRUCTURES; RESONANCE; CHAINS;
D O I
10.3389/fchem.2020.00836
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lanthanide-based upconversion nanoparticles can convert low-energy excitation to high-energy emission. The self-assembled upconversion nanoparticles with unique structures have considerable promise in sensors and optical devices due to intriguing properties. However, the assembly of isotropic nanocrystals into anisotropic structures is a fundamental challenge caused by the difficulty in controlling interparticle interactions. Herein, we report a novel approach for the preparation of the chain-like assemblies of upconversion nanoparticles at different scales from nano-scale to micro-scale. The dimension of chain-like assembly can be fine-tuned using various incubation times. Our study observed Y-junction aggregate morphology due to the flexible nature of amphiphilic block copolymer. Furthermore, the prepared nanoparticle assemblies of upconversion nanoparticles with lengths up to several micrometers can serve as novel luminescent nanostructure and offer great opportunities in the fields of optical applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Self-assembly of Si-containing block copolymer
    Zhu, Qingjun
    Koh, Jai Hyun
    Lynd, Nathaniel
    Willson, Carlton
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [42] Self-assembly of block copolymer micelles in an ionic liquid
    He, Yiyong
    Li, Zhibo
    Simone, Peter
    Lodge, Timothy P.
    Journal of the American Chemical Society, 2006, 128 (08): : 2745 - 2750
  • [43] Multilayer block copolymer meshes by orthogonal self-assembly
    Tavakkoli, Amir K. G.
    Nicaise, Samuel M.
    Gadelrab, Karim R.
    Alexander-Katz, Alfredo
    Ross, Caroline A.
    Berggren, Karl K.
    NATURE COMMUNICATIONS, 2016, 7
  • [44] Thin film block copolymer self-assembly for nanophotonics
    Kulkarni, Ashish A.
    Doerk, Gregory S.
    NANOTECHNOLOGY, 2022, 33 (29)
  • [45] Sequential Nanopatterned Block Copolymer Self-Assembly on Surfaces
    Jin, Cong
    Olsen, Brian C.
    Wu, Nathanael L. Y.
    Luber, Erik J.
    Buriak, Jillian M.
    LANGMUIR, 2016, 32 (23) : 5890 - 5898
  • [47] Directed block copolymer self-assembly for nanoelectronics fabrication
    Daniel J.C. Herr
    Journal of Materials Research, 2011, 26 : 122 - 139
  • [48] Functional nanomaterials based on block copolymer self-assembly
    Kim, Jin Kon
    Yang, Seung Yun
    Lee, Youngmin
    Kim, Youngsuk
    PROGRESS IN POLYMER SCIENCE, 2010, 35 (11) : 1325 - 1349
  • [49] Self-assembly of Protein Nanoarrays on Block Copolymer Templates
    Lau, K. H. Aaron
    Bang, Joona
    Kim, Dong Ha
    Knoll, Wolfgang
    ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (20) : 3148 - 3157
  • [50] Self-assembly of block copolymer micelles in an ionic liquid
    He, YY
    Li, ZB
    Simone, P
    Lodge, TP
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (08) : 2745 - 2750