Multicomponent Nanopatterns by Directed Block Copolymer Self-Assembly

被引:100
|
作者
Shin, Dong Ok [1 ,3 ]
Mun, Jeong Ho [1 ,2 ]
Hwang, Geon-Tae [1 ]
Yoon, Jong Moon [1 ,2 ]
Kim, Ju Young [1 ,2 ]
Yun, Je Moon [1 ,2 ]
Yang, Yong-Biao [4 ]
Oh, Youngtak [1 ,2 ]
Lee, Jeong Yong [1 ,2 ]
Shin, Jonghwa [1 ]
Lee, Keon Jae [1 ]
Park, Soojin [5 ]
Kim, Jaeup U. [4 ]
Kim, Sang Ouk [1 ,2 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, Taejon 305701, South Korea
[2] Inst for Basic Sci Korea, Ctr Nanomat & Chem React, Taejon 305701, South Korea
[3] Elect & Telecommun Res Inst, Power Control Device Res Sect, Taejon 305700, South Korea
[4] Ulsan Natl Inst Sci & Technol UNIST, Sch Mech & Adv Mat Engn, Ulsan 689798, South Korea
[5] Ulsan Natl Inst Sci & Technol UNIST, Interdisciplinary Sch Green Energy, Ulsan 689798, South Korea
基金
新加坡国家研究基金会;
关键词
multicomponent; nanopattern; block copolymer; self-assembly; NONVOLATILE MEMORY APPLICATIONS; THIN-FILMS; SOFT GRAPHOEPITAXY; LITHOGRAPHY; PATTERNS; ARRAYS; NANOSTRUCTURES; TEMPLATES; NANOCRYSTALS; PHOTORESIST;
D O I
10.1021/nn403379k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Complex nanopatterns integrating diverse nanocomponents are crucial requirements for advanced photonics and electronics. Currently, such multicomponent nanopatterns are principally created by colloidal nanoparticle assembly, where large-area processing of highly ordered nanostructures raises significant challenge. We present multicomponent nanopatterns enabled by block copolymer (B(P) self-assembly, which offers device oriented sub-10-nm scale nanopatterns with arbitrary large-area scalability. In this approach, BCP nanopatterns direct the nanoscale lateral ordering of the overlaid second level BCP nanopatterns to create the superimposed multicomponent nanopatterns incorporating nanowires and nanodots. This approach introduces diverse chemical composition of metallic elements including Au, Pt, Fe, Pd, and Co into sub-10-nm scale nanopatterns. As immediate applications of multicomponent nanopatterns, we demonstrate multilevel charge-trap memory device with Pt-Au binary nanodot pattern and synergistic plasmonic properties of Au nanowire-Pt nanodot pattern.
引用
下载
收藏
页码:8899 / 8907
页数:9
相关论文
共 50 条
  • [1] Self-assembly of block copolymer nanopatterns on surfaces
    Buriak, Jillian
    Jin, Cong
    Luber, Erik
    Olsen, Brian
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [2] Bactericidal nanopatterns generated by block copolymer self-assembly
    Fontelo, R.
    Soares da Costa, D.
    Reis, R. L.
    Novoa-Carballal, R.
    Pashkuleva, I
    ACTA BIOMATERIALIA, 2020, 112 : 174 - 181
  • [3] Directed block copolymer self-assembly for nanoelectronics fabrication
    Daniel J.C. Herr
    Journal of Materials Research, 2011, 26 : 122 - 139
  • [4] Directed block copolymer self-assembly for nanoelectronics fabrication
    Herr, Daniel J. C.
    JOURNAL OF MATERIALS RESEARCH, 2011, 26 (02) : 122 - 139
  • [5] A triboelectric nanogenerator with synergistic complementary nanopatterns fabricated by block copolymer self-assembly
    Yun, Seong-Yun
    Kim, Min Hyeok
    Yang, Geon Gug
    Choi, Hee Jae
    Kim, Do-Wan
    Choi, Yang-Kyu
    Kim, Sang Ouk
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (19) : 11302 - 11309
  • [6] Directed self-assembly of nanoparticles in block copolymer films.
    Chiu, JJ
    Yi, GR
    Kim, B
    Kramer, EJ
    Pine, DJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 227 : U1451 - U1452
  • [7] Directed Self-Assembly of Linear Arrays of Block Copolymer Cylinders
    Laachi, Nabil
    Iwama, Tatsuhiro
    Delaney, Kris T.
    Shykind, David
    Weinheimer, Corey J.
    Fredrickson, Glenn H.
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2015, 53 (05) : 317 - 326
  • [8] The Process-Directed Self-Assembly of Block Copolymer Particles
    Zhu, Yanyan
    Huang, Changhang
    Zhang, Liangshun
    Andelman, David
    Man, Xingkun
    MACROMOLECULAR RAPID COMMUNICATIONS, 2023, 44 (17)
  • [9] Computational Modeling of Block-Copolymer Directed Self-Assembly
    Ginzburg, Valeriy V.
    Weinhold, Jeffrey D.
    Trefonas, Peter
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2015, 53 (02) : 90 - 95
  • [10] Engineering the domain roughness of block copolymer in directed self-assembly
    Lai, Hanwen
    Huang, Guangcheng
    Tian, Xin
    Liu, Yadong
    Ji, Shengxiang
    POLYMER, 2022, 249